Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

FEATURES

- Conductive Polymer Electrode
- Benign Failure Mode Under Recommended Use Conditions
- Compliant to the RoHS3 directive 2015/863/EU
- SMD Facedown
- Small and Low Profile
- High Volumetric Efficiency
- 100% Surge Current Tested

LEAD-FREE COMPATIBLE COMPONENT

APPLICATIONS

- Smartphone
- Tablet PC
- Wireless Module
- Portable Game

· Bulk Decoupling of SoC (System on Chip)

CASE DIMENSIONS: millimeters (inches)

Code	Special Code	EIA Code	EIA Metric	L	W ₁	W ₂	Н	S ₁	S ₂
М		0603	1608-09	1.60 ^{+0.20} _{-0.10} (0.063 ^{+0.008} _{-0.004})	0.85 ±0.20 (0.033 ±0.008)	0.65±0.10 (0.026±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
М	AXE	0603	1608-10	1.60 ^{+0.20} _{-0.10} (0.063 ^{+0.008} _{-0.004})	0.85 ^{+0.20} _{-0.10} (0.033 ^{+0.008} _{-0.004})	0.65±0.10 (0.026±0.004)	1.00 Max. (0.039 Max.)	0.50±0.10 (0.020±0.004)	0.60±0.10 (0.024±0.004)
S		0805	2012-09	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	1.25 +0.20 (0.049 +0.008)	0.90±0.10 (0.035±0.004)	0.80±0.10 (0.031±0.004)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)
S	H8Z	0805	2012-08	2.00 ^{+0.20} _{-0.10} (0.079 ^{+0.008} _{-0.004})	1.25 +0.20 (0.049 +0.008)	0.90±0.10 (0.035±0.004)	0.80 Max. (0.031 Max.)	0.50±0.10 (0.020±0.004)	1.00±0.10 (0.039±0.004)
U		0402	1106-06	1.10±0.05 (0.043±0.002)	0.60±0.05 (0.024±0.002)	0.35±0.05 (0.014±0.002)	0.55±0.05 (0.022±0.002)	0.30±0.05 (0.012±0.002)	0.50±0.05 (0.020±0.002)

HOW TO ORDER

pF code: 1st two digits represent significant figures, 3rd digit represents multiplier (number of zeros to follow)

Reel Dia	Tape Width
(φ180)	(mm)
Α	8

Special Code AXE = Rated temperature 60°C and H

dimension 1.0mm Max. AXEH3 = Rated temperature 60°C and H dimension 1.0mm Max., Low

ESR LZT = Rated temperature 60°C

LZTH1 = Rated temperature 60°C, Low

AH1, AH2, Low ESR AH3 =

TECHNICAL SPECIFICATIONS

		H8∠ = H dimension 0.8mm Max.
Category Temperature Range:	-55 to +105°C	The annotation of the annotati
Rated Range:	+85°C or +60°C (*2)	
Capacitance Tolerance:	±20% at 120Hz	
Dissipation Factor:	Refer to next page (120Hz)	
ESR 100kHz:	Refer to next page (120Hz)	
Leaking Current:	Refer to next page	
	At 20°C after application of rated voltage for 5 minutes	
	Provided that:	
	After 5 minute's application of rated voltage, leakage current at 105°C	
	10 times or less than 20°C specified value.	
Termination Finish:	M, S case: Gold Plating (standard), U case: Sn-3.5Ag Plating (standard)	

^{*2} LZT and AXE: Rated temperature +60°C, Surge and Endurance test temperature +60°C

Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

Capac	itance	Rated Voltage							
μF	Code	4V (0G)	6.3V (0J)	8V (0K)	10V (1A)	25V (1E)	30V (1S)	Code	
1.0	105		U					Α	
2.2	225				М	М		J	
4.7	475		U		M/S	S	S	S	
10	106		M/M(AH1,AH2)/S/U		M/M(AH1)/S			а	
22	226		M/M(AH3,AH1)/S/S(AH1)		M*4/S			J	
33	336		M**/S	S***	S**			n	
47	476		M*4/M*4(H3)/S/ S(AH1)/S***	S	S**			s	
68	686		S**					W	
100	107	S**	S**/S**(H1)					Α	

Released ratings, (Low ESR)

- ** (LZT) Rated temperature 60°C and H dimension 1.0mm Max. Please contact AVX when you need detail spec.

 ** (LZT) Rated temperature 60°C. Please contact AVX when you need detail spec.

Please contact to your local AVX sales office when these series are being designed in your application.

THE CORRELATIONS AMONG RATED **VOLTAGE, SURGE VOLTAGE AND DERATED VOLTAGE**

	F38 (Standard)						
Rated Voltage (V) ≤85°C	6.3	8	10	25	30		
85°C Surge Voltage (V)	8	10	13	32	39		
105°C Derated Voltage (V)	5	6.3	8	20	24		

	F38-LZT, F38-AXE					
Rated Voltage (V) ≤60°C	4	6.3	10			
60°C Surge Voltage (V)	5.2	8	13			
85°C Derated Voltage (V)	2.8	4.5	7.2			
105°C Derated Voltage (V)	2	3.3	5			

RATINGS & PART NUMBER REFERENCE

AVX Part No.	Case Size	Capacitance		DCL	DF @	ESR @ 100kHz	100kHz RMS Current (mA)				*3 ∆C/C	MSL
AVA Part No.	Case Size	(μF)	(V)	(µA)	120Hz (%)	(mΩ)	45°C	60°C	85°C	105°C	(%)	IVIOL
					4 Volt							
380G107MSALZT	S	100	4	80.0	10	200	474	332	-	237	*	3
					6.3 Volt							
380J105MUA	U	1	6.3	0.6	6	1500	100	-	70	50	*	3
-380J475MUA	U	4.7	6.3	20.0	10	1500	100	_	70	50	*	3
-380J106MMA	М	10	6.3	10.0	8	500	224	-	157	112	*	3
380J106MMAAH1	M	10	6.3	10.0	8	300	289	_	202	144	*	3
380J106MMAAH2	M	10	6.3	10.0	8	200	354	-	247	177	*	3
=380J106MSA	S	10	6.3	6.3	10	250	424	-	297	212	*	3
F380J106MUA	U	10	6.3	20.0	10	1500	100	-	70	50	*	3
-380J226MMA	М	22	6.3	13.9	10	500	224	_	157	112	*	3
380J226MMAAH3	M	22	6.3	13.9	10	300	289	-	202	144	*	3
380J226MMAAH1	М	22	6.3	13.9	10	200	354	-	247	177	*	3
F380J226MSA	S	22	6.3	13.9	10	200	474	-	332	237	*	3
F380J226MSAAH1	S	22	6.3	13.9	10	150	548	-	383	274	*	3
F380J336MMALZT	М	33	6.3	41.6	10	500	224	157	-	112	*	3
F380J336MSA	S	33	6.3	20.8	10	200	474	-	332	237	*	3
380J476MMAAXE	М	47	6.3	59.2	10	500	224	157	-	112	*	3
380J476MMAAXEH3	М	47	6.3	59.2	10	300	289	202	-	144	*	3
-380J476MSA	S	47	6.3	29.6	10	200	474	-	332	237	*	3
380J476MSAAH1	S	47	6.3	29.6	10	150	548	-	383	274	*	3
F380J476MSAH8Z	S	47	6.3	29.6	10	200	474	_	332	237	*	3
F380J686MSALZT	S	68	6.3	86.0	10	200	474	332	-	237	*	3
F380J107MSALZT	S	100	6.3	126.0	10	200	474	332	-	237	*	3
F380J107MSALZTH1	S	100	6.3	126.0	10	150	548	383	-	274	*	3
0000107111071221111			0.0	120.0	8 Volt		0.10	- 000				
-380K336MSAH8Z	S	33	8	26.4	10	200	474	_	332	237	*	3
F380K476MSA	S	47	8	37.6	10	200	474	_	332	237	*	3
0001(1701110)(.,		07.0	10 Volt	200	.,,		002	207		
F381A225MMA	М	2.2	10	10.0	6	500	224	_	157	112	*	3
F381A475MMA	M	4.7	10	10.0	6	500	224	-	157	112	*	3
F381A475MSA	S	4.7	10	4.7	10	300	387	_	271	194	*	3
F381A106MMA	M	10	10	10.0	15	500	224	-	157	112	*	3
F381A106MMAAH1	M	10	10	10.0	15	300	289	_	202	144	*	3
F381A106MSA	S	10	10	10.0	6	200	474	_	332	237	*	3
F381A226MMAAXE	M	22	10	44.0	10	500	224	157	-	112	*	3
-381A226MSA	S	22	10	22.0	10	200	474	157	332	237	*	3
F381A336MSALZT	S	33	10	99.0	10	200	474	332	- 332	237	*	3
F381A476MSALZT	S	47	10	94.0	10	200	474	332	_	237	*	3
JUIA4/UNIJALLI	s	4/	10	94.0	25 Volt	200	4/4	332		23/		3
F381E225MMA	I м	2.2	25	10.0	10	500	224		157	112	*	3
-381E225MMA -381E475MSA	S	4.7	25	11.8	10	500	300	_	210	150	*	3
-301E4/3W3A	5	4./	25	11.8		500	300		210	150		3
201047EMCA		4.7	20	141	30 Volt	F00	200	Ι -	210	150	*	
-381S475MSA -3: ΔC/C Marked "*"	S	4.7	30	14.1	10	500	300	_	210	150	_ ^	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020

Item	All Case (%)
Damp Heat, steady state	-20 to +30
Rapid change of temperature	±20
Resistance soldering heat	±20
Surge	±20
Endurance	±20

^{*** (}H8Z) H dimension 0.8mm Max.

Conductive Polymer, Miniature, Undertab Solid Electrolytic Chip Capacitors

RECOMMENDED DEREATING FACTOR

Voltage and temperature derating as percentge of Vr

QUALIFICATION TABLE

TEST	F38 series (Temperature Range -55°C to +105°C)	
1531	Condition	
Damp Heat (Steady State)	At 40°C, 90 to 95% R.H., 500 hours (No voltage applied) Capacitance Change	
Temperature Cycles	At -55°C / +105°C, 30 minutes each, 5 cycles Capacitance Change Refer to the table above (*3) Dissipation Factor	
Resistance to Soldering Heat	5 seconds reflow at 260°C Capacitance Change Refer to the table above (*3) Dissipation Factor	
Surge	After application of surge voltage in series with a 1kΩ resistor at the rate of 30 seconds ON, 30 seconds OFF, for 1000 successive test cycles at 85°C or 60°C (*2), capacitors shall meet the characteristic requirements in the t Capacitance Change	able above.
Endurance	After 1000 hours' application of rated voltage in series with a 3Ω resistor at 85°C or 60°C (*2), capacitors shall meet the characteristic requirements in the table above. Capacitance Change	
Shear Test	After applying the pressure load of 5N for 10±1 seconds horizontally to the center of capacitor side body which has no electrode and has been soldered beforehand on a substrate, there shall be found neither exfoliation nor its sign at the terminal electrode.	5N (0.51kg ⋅ f) For 10±1 seconds
Terminal Strength	Keeping a capacitor surface-mounted on a substrate upside down and supporting the substrate at both of the opposite bottom points 45mm apart from the center of capacitor, the pressure strength is applied with a specified jig at the center of substrate so that the substrate may bend by 1mm as illustrated. Then, there shall be found no remarkable abnormality on the capacitor terminals.	R230 - 20mm 45mm 45mm

^{*2} LZT and AXE: Rated temperature 60°C, Surge and Endurance test temperature 60°C

SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera AVX:

F381A225MMA F380J476MSA F380J336MSA F380G106MMA F380J106MMA F381A475MMA F380G336MSA
F380J226MMA F381A106MMA F380J476MMAAXE F380J226MSA F380J336MMALZT F380J686MSALZT
F381A226MSA F380J226MSAAH1 F380J476MSAAH1 F380J476MMAAXEH3 F381A106MMAAH1
F380J106MMAAH1 F380J226MMAAH3 F380J226MMAAH1 F380J106MMAAH2 F380J475MUA F381A336MSALZT
F380J105MUA F380J106MMAAH3 F381A476MSALZT F381A226MMAAXE F381E475MSA F380J106MSA
F380J107MSALZTH1 F381A475MSA F381E225MMA F380K476MSA F380G107MSALZT F380J106MUA
F381S475MSA