LED Control IC W2RG012RN

Optimal IC for LED Control

- · An exponential function-based PWM gradation control for up to 256 gradations, enabling beautiful fade-in and fade-out.
- Dynamic drive of LEDs connected in a matrix form; individual control of up to 128 LED Lines.
- Serial bus connection permitting connection of up to 15 ICs on the same communication line.
- 24 constant current outputs contained in a small package of 7 x 7 mm.
- Built-in thermal shutdown.
- RoHS Compliant

Ordering Information

Description	Model
LED Control IC	W2RG012RN

Specifications

Absolute Maximum Ratings

Item	Symbol	Rating	Applicable Terminal
Supply Voltage	V _{DD}	-0.3 to 7.0 V	V _{DD}
Input Voltage	V _{IN}	-0.3 to V_{DD} + 0.3 \leq 7.0 V	SDA, SCL, RST, CE, ADR1, ADR0, DIV, COM
Signal Output Voltage	V _{SOUT}	-0.3 to V_{DD} + 0.3 \leq 7.0 V	SDO, OUTDC
Drive Output Voltage	V _{DOUT}	-0.3 to 20 V	OUT0R~7R, OUT0G~7G, OUT0B~7B, OUTS0~S3
Drive Output Current/pin (See note 1)	I _{DOUT}	80 mA	OUT0R~7R, OUT0G~7G, OUT0B~7B
Switch Output Current/pin	IDOUTS	20 mA	OUTS0~S3
	Pd1	3.43 W	
Allowable Power Dissipation (See note 2)	Pd2	1.80 W	
(000 11010 2)	Pd3	1.16 W	
Ambient Operating Temperature	T _{OPR}	-20 to 85 °C	
Ambient Storage Temperature	T _{STG}	-40 to 150 °C	

Note: 1. Take the power consumption and allowable power dissipation rating into consideration.

2.

Values when the product is mounted on a standard substrate (70 mm x 70 mm x1.6 mmt, FR-4). When using the product at Ta = 25°C or higher, the values must be decreased using the constant of temperature decrease R_{td} [mW/°C].

Pd1: R_{td} = 27.4 mW/°C for a double-sided substrate with a back layer copper foil area of 4,900 mm² Pd2: R_{td} = 14.4 mW/°C for a double-sided substrate with a back layer copper foil area of 225 mm² Pd3: R_{td} = 9.28 mW/°C for a single-sided substrate with a copper foil area of 36 mm²

Recommended Operating Conditions

Item	Symbol	Rating	Applicable Terminal
Supply Voltage	V _{DD}	3.0 to 5.5 V	V _{DD}
Input Voltage	V _{IN}	0 to V _{DD} V	SDA, SCL, RST, CE, ADR1, ADR0, DIV, COM
Signal Output Current	I _{SOUT}	-10 to 10 mA	SDO, OUTDC
Communication Clock Frequency (See note 1)	f _{SCL}	Max. 5 MHz	SCL

Note: 1. Take the timing characteristics into consideration.

DC Electrical Characteristics (Ta = 25° C, V_{DD} = 5V)

Item	Symbol	Condition		Spec.		Unit	Applicable	
	Symbol			Тур.	Max.	Unit	terminal	
High-level Input Voltage	V _{IH}		V _{DD} x 0.7			V	SDA, SCL, RST, CE	
Low-level Input Voltage	V _{IL}				V _{DD} x 0.3	V	3DA, 30L, H31, UL	
	V _{AD1}	"10" output	V _{DD} x 0.9		$V_{DD} + 0.3$	V		
A/D Input Voltage	V _{AD2}	"11" output	V _{DD} x 0.6		V _{DD} x 0.7	V	ADR1, ADR0, DIV, COM	
A/D input voltage	V _{AD3}	"01" output	V _{DD} x 0.3		V _{DD} x 0.4	V		
	V _{AD4}	"00" output	-0.3		V _{DD} x 0.1	V		
High-level Signal Output Voltage	V _{SOH}	I _{SOUT} = -5 mA	V _{DD} - 0.5			V	SDO, OUTDC	
Low-level Signal Output Voltage	V _{SOL}	I _{SOUT} = 5 mA			0.5	V	300,00100	
ON Resistance1	R _{ON1}			6.3	10	Ω		
Inter-pin Current Accuracy	ΔIP	$I_{DOUT} = 20 \text{ mA}$	-3		3	%	OUT0R~7R OUT0G~7G	
Inter-device Current Accuracy	ΔID	$I_{DOUT} = 20 \text{ mA}$	-6		6	%	OUT0B~7B	
Drive Output Leak Current	I _{DL}				1	μA		
ON Resistance2	R _{ON2}			9	20	Ω	OUTS0~S3	
Operating Current Consumption	I _{DD}	Total Output: I _{DOUT} = 20 mA		5	7	mA	V _{DD}	

Timing Characteristics (Ta = -20 to 85 °C, V_{DD} = 3.0 to 5.5V)

Serial Communication with Address

Item	Symbol	nbol Condition Spec.			Unit	Applicable	
	Symbol	Condition	Min.	Тур.	Max.	Unit	terminal
Communication Clock Pulse Width	t _{SCL}		100			ns	SCL
Data Setup Time	t _{SDA_SU}		90			ns	SCL,SDA
Data Hold Time	t _{SDA_HD}		90			ns	SCL,SDA
CE Setup Time	t _{CE_SU}		50			ns	SCL, SDA, CE
CE Hold Time	t _{CE_HD}		50				
Data Output Time	t _{spo}	Load capacity: 100 pF			80	ns	SCL, SDO

I²C-based Serial Communication

Item	Symbol Condition			Spec.		Unit	Applicable
	Symbol	Condition	Min.	in. Typ. Max.		Unit	terminal
Clock "L" Period	t _{LOW}	50			ns	SCL	
Clock "H" Period	t _{HIGH}		50			ns	301
Bus Freeing Time	t _{BUF}		80			ns	SDA
Start Setup Time	t _{su;sta}		50			ns	
Start Hold Time	t _{HD;STA}		50			ns	
Stop Setup Time	t _{su;sto}		50			ns	SCL,SDA
Data Setup Time	t _{SU;DAT}	30			ns		
Data Hold Time	t _{HD;DAT}		0			ns	
CE Setup Time	t _{SU;CE}		50			ns	SCL, SDA, CE
CE Hold Time	t _{HD;CE}	50 ns		ns	SOL, SDA, OL		
Data Output Time	t _{spo}	Load capacity: 100 pF			80	ns	SCL, SDO

Engineering Data

Block Diagram

Terminal Designation

Terminal Number	Terminal Name	Description	I/O	Function
1	SDA	Serial data input	I	
2	SCL	Serial clock input		CMOS, filter
3	CE	Chip enable input (See note 1)	I	
4	V _{DD}	Power source	Р	
5	CAP	Capacitor (See note 2)		
6	GND	Ground	Р	
7	ADR1	Device address 1		
8	ADR0	Device address 0		Resistance partia
9	DIV	Division mode		pressure input
10	COM	Communication mode		
11	REXTR	Current setting resistance R		
12	REXTG	Current setting resistance G		
13	REXTB	Current setting resistance B		
14	OUTOR	Output 0R	0	
15	OUT0G	Output 0G	0	Constant Curren
16	OUT0B	Output 0B	0	
17	GND	Ground	Р	
18	OUT1R	Output 1R	0	
19	OUT1G	Output 1G	0	
20	OUT1B	Output 1B	0	Constant Currer
21	OUT2R	Output 2R	0	
22	OUT2G	Output 2G	0	
23	GND	Ground	Р	
24	OUT2B	Output 2B	0	
25	OUT3R	Output 3R	0	
26	OUT3G	Output 3G	0	\neg
27	OUT3B	Output 3B	0	Constant Currer
28	OUT4R	Output 4R	0	
29	OUT4G	Output 4G	0	
30	OUT4B	Output 4B	0	
31	GND	Ground	Р	
32	OUT5R	Output 5R	0	
33	OUT5G	Output 5G	0	
34	OUT5B	Output 5B	0	Constant Currer
35	OUT6R	Output 6R	0	
36	OUT6G	Output 6G	0	
37	GND	Ground	P	
38	OUT6B	Output 6B/Output switch 4	0	
39	OUT7R	Output 7R/Output switch 5	0	
40	OUT7G	Output 7G/Output switch 6	0	Constant Currer
41	OUT7B	Output 7B/Output switch 7	0	
42	OUTS0	Output switch 0	0	
43	OUTS1	Output switch 1	0	—
44	OUTS2	Output switch 2	0	N-ch open drain
45	OUTS3	Output switch 3	0	
46	OUTDC	Synchronous control output	0	
40	SDO	Serial data output	0	CMOS
17	020	Contai data Output		CMOS, filter, pull-

Note: 1. When CE terminal is not used, keep it in L fixing condition. (This does not apply to CE-D8 mode.)

2. CAP terminal is connected to capacitor for power smoothing. Connect a 0.1 µF capacitor between the terminal and GND.

 A 100 kΩ pullup resistance is built in the RST terminal. It is recommended that when the terminal is not used, a 0.1 µF capacitor be connected between the terminal and GND to ensure stable operation.

4. Leave unused output terminals open.

Operation

Functional Overview

LEDs in 24 systems are driven at a constant current or voltage. Also, LEDs connected in a matrix form can be lit dynamically (pulse lighting). For dynamic lighting, LEDs in 48 systems (divided into 2 parts), 96 systems (divided into 4 parts), or 128 systems (divided into 8 parts) can be gradation controlled individually.

Command Reception

An LED lighting command is received via serial communication. Regarding communication method, the product can adapt to three kinds of serial communication with address, and I²C-based serial communication. LED lighting data for up to 128 units can be transmitted continuously. As only a single operation is required for designation of a start signal or a device address, the overall volume of communication can be reduced.

Gradation Control

A 256-gradation can be used for lighting. Each gradation is allocated to a duty ratio based on the exponential function, to enable lighting design suited to human visual sensation.

Matrix Control

The product is adapted to connection of 24x1, 24x2, 24x4 and 16x8 matrix. Also, lighting errors at switching can be controlled by controlling switch timing for dynamic lighting.

Power-saving Control

For driving, power consumption for LED lighting is controlled to 75%/50%25% of the normal level. Collective switching via communication command can be executed, permitting easy switching between normal and power-saving operations. Either current control or duty ratio control can be selected as control method. For current control, the output current is changed to a 75%/50%/25% level, with the current set with current setting terminal REXTR/REXTG/REXTB as reference. For duty ratio control, the output duty ratio is changed to a 75%/50%/25% level, with the duty ratio allocated to a gradation as reference.

Number of Control Systems

Up to 15 devices can be connected through address designation. This permits the control of LEDs in up to 1,920 systems. Additional devices can be connected by switching the CE terminal.

Description of Terminals

Setting By Inputting Resistance Partial Pressure

Device address setting terminal (ADR1/ADR0), division mode setting terminal (DIV), and communication mode setting terminal (COM) are level input terminals with an A/D converter built in internal IC. One of 4 voltage levels (GND, $V_{DD} x 1/3$, $V_{DD} x 2/3$, and V_{DD}) is set by inputting resistance partial pressure.

Device Address Setting

The device address is set by inputting resistance partial pressure to device address setting terminal (ADR1/ADR0). The address is chosen from among 15 addresses from "0000" to "1110". "1111" cannot be designated to any device, as it is used for collective designation to all devices in communication. The relationship between device address and ADR terminal voltage is shown in the table below.

Device Address	ADR1	ADR0
0000	GND	GND
0001	GND	V _{DD} x 1/3
0010	GND	V _{DD}
0011	GND	V _{DD} x 2/3
0100	V _{DD} x 1/3	GND
0101	V _{DD} x 1/3	V _{DD} x 1/3
0110	V _{DD} x 1/3	V _{DD}
0111	V _{DD} x 1/3	V _{DD} x 2/3
1000	V _{DD}	GND
1001	V _{DD}	V _{DD} x 1/3
1010	V _{DD}	V _{DD}
1011	V _{DD}	V _{DD} x 2/3
1100	V _{DD} x 2/3	GND
1101	V _{DD} x 2/3	V _{DD} x 1/3
1110	V _{DD} x 2/3	V _{DD}
1111 (reserved)	V _{DD} x 2/3	V _{DD} x 2/3

Selection of Division Mode

The matrix configuration for connected LEDs is set by inputting resistance partial pressure to devision mode setting terminal (DIV). The relationship between matrix configuration and DIV terminal voltage is shown in the table below.

Matrix configuration	DIV
24 x 1	GND
24 x2	V _{DD} x 1/3
24 x 4	V _{DD}
16 x 8	V _{DD} x 2/3

Selection of Division Mode (continued)

The function of output terminal varies according to matrix configuration. The relationship between matrix configuration and terminal function is shown in the table below.

Output	Matrix Configuration					
terminal	24 x 1	24 x 2	24 x 4	16 x 8		
OUTOR		OU	TOR			
OUT0G		OU	T0G			
OUTOB		OU.	T0B			
OUT1R		OU	T1R			
OUT1G		OU	T1G			
OUT1B		OU.	T1B			
OUT2R		OU	T2R			
OUT2G		OU	T2G			
OUT2B		OU.	T2B			
OUT3R		OU	T3R			
OUT3G		OU	T3G			
OUT3B		OU.	ТЗВ			
OUT4R		OUT4R				
OUT4G	OUT4G					
OUT4B	OUT4B					
OUT5R	OUT5R					
OUT5G	OUT5G (Not used					
OUT5B		OUT5B		(Not used)		
OUT6R		OUT6R		(Not used)		
OUT6G		OUT6G		(Not used)		
OUT6B		OUTS4				
OUT7R	OUT7R C			OUTS5		
OUT7G	OUT7G OUTS6					
OUT7B	OUT7B OUTS7					
OUTS0	OUTS0					
OUTS1	(Not used) OUTS1					
OUTS2	(Not used) (Not used) OUT			TS2		
OUTS3	(Not used)	(Not used)	OU	TS3		

Selection of Communication mode

The communication mode is set by inputting resistance partial pressure to communication mode setting terminal (COM). The relationship between communication mode and COM terminal voltage is shown in the table below.

Communication mode	COM
Serial communication with address (SP-D8)	GND
Serial communication with address (SP-D7)	V _{DD} x 1/3
I ² C-based serial communication (I ² C)	V _{DD}
Serial communication with address (CE-D8)	V _{DD} x 2/3

Setting of Drive Current

Constant Current Drive

Formula for Current Setting

6

 I_{DOUT} (mA) = 2,560/REXT resistance (k Ω)

Current can be set individually for 3 groups (R/G/B). Current is set by connecting current setting resistance terminal (REXTR/REXTG/REXTB) to GND through external REXT resistance (See note 1). The relationship between current and REXT resistance is shown below.

Current (mA)	REXT resistance (kΩ)
10	256
15	171
20	128
25	102
30	85.3
40	64.0
50	51.2
60	42.7
70	36.6
80	32.0
30 40 50 60 70	85.3 64.0 51.2 42.7 36.6

Recommended Operating Conditions

 I_{DOUT} : 10 ~ 80 mA (momentary value).

Note: 1. The current that is set is a momentary value. When LEDs are composed into a matrix, the effective value is calculated by dividing the original value by the matrix's division number. For example, when current is set at 60 mA in a 24x4 configuration, the effective value is 15 mA (= 60 mA/4).
2. The effective value is: 1. division number.

2. The effective value is: ${\rm I}_{\rm DOUT}/{\rm division}$ number.

Constant Voltage Drive

Current can be set individually for output terminals in 24 systems (OUT0R ~ 7R,/ OUT0G ~ 7G/OUT0B ~ 7B). To set current individually, resistance is put in series relative to the LED to be lit. Current setting resistance terminal (REXTR/REXTG/REXTB) is connected to REXT resistance with which current becomes higher than the operating current. The relationship between current and series resistance/REXT resistance is shown below.

Formula for Current Setting

 I_{DOUT} (mA) = Supply voltage (V) / (Series resistance (Ω) + On resistance 6.3 Ω) < 2,560 / REXT resistance ($k\Omega$)

Reset

When the input to reset terminal (RST) is L, all internal circuits are reset. Each buffer passes into the initial condition; the constant current output terminal and the open drain output terminal into open output; and CMOS output terminal into L output. When the input is changed from L to H, operation is resumed from the initial condition.

Communication Specifications This IC can adapt to 4 communication modes. The communication mode is set with communication mode setting terminal (COM).

Serial Communication with Address (SP-D8 Mode)

Communication is started with a 9-bit start signal. Communication stability is enhanced by inserting a separator into data at intervals of 8 bits.

Serial Communication with Address (SP-D7 Mode)

Communication is started with an 8-bit start signal. Communication stability is enhanced by inserting a separator into data at intervals of 7 bits.

Serial Communication with Address (CE-D8 Mode)

The start and termination of communication is controlled with chip enabled signals. This communication mode is adapted to general-purpose serial parallel interface.

I²C Mode Communication (I²C Mode)

This communication mode conforms to general-purpose I²C communication protocol.

The name and communication format of each communication mode are shown below.

Name of communication mode	Abbreviation	Start Signal	Stop Signal	Separator	Data Width	Response
Serial communication with address (SP-D8 mode)	SP-D8	"1 1111 1111 0"	"1 1111 1111"	0: continuation 1: termination	8	ACK (NACK)
Serial communication with address (SP-D7 mode)	SP-D7	"1111 1111 0"	"1111 1111"	0: continuation 1: termination	7	ACK (NACK)
Serial communication with address (CE-D8 mode)	CE-D8	CE fall	CE rise	(None)	8	SYN
I ² C-based serial communication (I ² C mode)	l ² C	I ² C standard-based	I ² C standard-based	I ² C standard-based	8	ACK (NACK)

Start Signal: Communication is initialized, whether in wait or communication, into the device selection data wait condition.

Stop Signal: Communication is terminated, and passes into the start signal wait condition. In SP-D8/SP-D7, procedures to terminate communication (transmitting "1" to separator/transmitting a stop signal) can be omitted by transmitting a start signal after transmitting gradation data. This bit is inserted into transmitted data. In SP-D8/SP-D7, communication is terminated by transmitting "1" to separator, and passes into the Separator: stop/start signal wait condition. In I²C, separator is allotted to ACK response

Data Width: Data width refers to the bit width of transmitted data. In SP-D7, data that can be designated are restricted (no word length designation, designation of 128 gradations).

Response refers to the type of response. This IC outputs data to SDO terminal at the fall of SCL signal. In SP-D8/SP-D7/I²C, received data are checked, and a result is returned (ACK or NACK). In CE-D8, a synchronization signal indicating in-communication status is output (SYN). Received data are not checked. Response:

Chip Enable

This IC has chip enable terminal (CE). If L is input as signal to the chip enable terminal, the chip becomes effective.

Serial Communication with Address (SP-D8, SP-D7), I²C-based Serial Communication

Communication data are received only when the chip is effective. If the chip becomes ineffective during communication, the IC interior passes into the wait condition, and received communication data are ignored.

Serial Communication with Address (CE-D8)

The change of a chip enabled input signal means the start or termination of communication. If the chip passes from an effective condition (L input) into an ineffective condition (H input), judgment is made that the communication has terminated, and the IC interior returns to the initial condition.

Communication Format

Serial Communication with Address (SP-D8 Mode)

			Word length: 0; gradation data	: 8-bit designation		
bit	1 2 3 4 5 6 7 8 9	0 10 11 12 13 14 15 16 17 18 1	19 20 21 22 23 24 25 26 27	28 29 30 31 32 33 34 35 36	884 885 886 887 888 889 890 891	1 892 893 894 895 896
SCL					<u>╢┰┎┎┰┰┰┰┰</u> ╟	
SDA	1 1 1 1 1 1 1 1 1 1 1 1		0 0 0	0		1 1 1 1 1
Name	START	Device Device R ID Address R Device selection data dvc_dat[7:0]	P Register address P Register selection data reg_dat[7:0]	S Gradation data (0) P light_dat0[7:0]	Gradation data (95) P light_dat95[7:0]	STOP Byte Adjustment
SDO	0	0 1	1 0	1 0	0 0	1 0 0
Name		AC	ICK	ACK A	Ċŧ.	ACK
			Word length: 1; gradation data 20 21 22 23 24 25 26 27	: 4-bit designation 28 29 30 31 32 33 34 35 36	452 453 454 455 456 457 458 455	9 460 461 462 463 464

20 1	21 1	22 1	23	24	25 1	26 1	27 1	28	29 1	30 1	31 1	<u>32</u>	33 1	34 1	35 ∱	36	X	452 f	453 1	454 f	455 f	456 1	457 1	458 f	459 1	460 1	461 f	462 4	63 464
1 Word		_	_					0									0									1	1	1	1 1
length	Word length Register address S Gradation data (0) Gradation d Register selection data P light_dat0[3:0] light_dat1								ß			n data at94[n data at95[3		ST	OP		yte stment								
	Register selection data reg_dat[7:0]							r		,	[.			,		1	(-9			1				1			Aujua	Sumeriu
	0							1				()				Ŵ					0				1	0		0
								ACK									AO									ACK			

Byte adjustment: When transmitting data with 8 bits as unit, "1" is designated to remaining bits after STOP.

Serial Communication with Address (SP-D7 Mode)

bit SCL			11 12 13 14 15	16 17 ∱_∱	18 19 20 21 22 23 24 f f f f f f f f f	25 1	26 27 28 29 30 31 32 1 1 1 1 1 1 1		786 787 788 789 790 791 792	793 794 795 796 797 798 799 800
SDA	1 1 1 1 1 1 1	1 1 0 0	1 0	0		0		0)		1 1 1 1 1 1 1 1 1
Name	START		Device Device Address	SP	Register address Register selection data	S P	Gradation data (0) light_dat0[6:0]	P	Gradation data (95) light_dat95[6:0]	STOP
			dvc_dat[6:0]		reg_dat[6:0]					
SDO	0		0	1	0	1		\mathbb{N}_1	0	1 0
Name				ACK		ACK		ACK		ACK

Serial Communication with Address (CE-D8 Mode)

										Wo	rd le	engtl	h: 0;	gra	dati	on c	lata:	8-b	it de	esigr	natio	n												
bit		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	777	778	779	780	781	782	783	784	
CE	Ļ																								,	Δ								1
SCL		ſ	ſ	ſ	ſ	ſ	ſ	ſ	ſ	ſ	ſ	ſ	₫	ſ	₫	ſ	ſ	ſ	ſ	ſ	ſ	ſ		ſ	ſ	W	ſ	ſ	ſ	ſ	Lf	ſ		
SDA	1	0	1	0					0	0																1//								1
Name	START	Device Device ID Address							R W	Word length			v	ter a						Grad	datio	n dat	ta (0))		ľ		Grad	latio	n dat	ta (9	5)		STOP
Name	STANT		0	Devic dv	e sel c_da	lectio tt[7:0	on da]	ta			F	Regis re	ter s eg_d	elect at[7:	ion c 0]	lata				lig	ht_da	at0[7	ta (0) ':0]					Grac lig	ht_d	at95	[7:0]	-,		3106
SDO	0				0				1				0				1				0				1	K.			0				1	0
Name									SYN								SYN								SYN	//							SYN	

Wo	rd le	engt	h: 1;	; gra	adati	on c	lata	: 4-b	oit de	esigi	natio	on												
9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	393	394	395	396	397	398	399	400	
															1									
ſ	ſ	ſ	_↑	ſ	ſ	ſ	ſ	ſ	_↑	ſ	_↑	ſ	_↑	ſ	_↑	M.	Ĺſ	ſ	₫	_↑	ſ	ſ	ſ	
1																1//								1
Word length			0	er ad				Gra	datio	n dat	a (0)	Gra	datio	n dat	a (/)	/ Grac	latior	n data	ı (94)	Grac	lation	n data	ι (95) 3:0]	STOP
	R	legis r	ter se eg_d	elect at[7:	ion d 0]	lata		lig	iht_d	at0[3	:0]	lig	iht_d	at1[3	:0]	lig	ht_d	at94[3:0]	lig	ht_da	at95[3:0]	0101
	0										0				1	ί.			0				1	0
							SYN								SYN	/							SYN	

I²C-based Serial Communication (I²C Mode)

						Word	length:	0; gra	adatio	on dat	a: 8-b	oit de	signat	ion												
bit		1 2 3	4 5 6 7	7 8	9	10 1	1 12 1	3 14	15	16 17	18	19	20 21	22	23	24	25	26 📉	874	875 8	76 877	7 878	879	880 88	81 882	
SCL		ւրդեր	חחחח	ТLГ	ſ	ЪЪ	ĿĿĿ	ſĿſ	LT	ЪЪ	Ŀ	Ŀſ	<u>f</u> If	Ŀſ	Ŀ	ſ	ſ	μ	٦L,	ſ	ſĿſ	Ŀ	ſ	ſ	ПЛ	
SDA	•	0 1 0				1							1							1						
Name	START	Device ID	Device Address	R W		W ord length	Reg	ister a	ddres	s	(uec		Gra	adatio	on da dat0[7	ta (0)		Open		Gi	radatio light_d	on dat	a (95)	Open)	STOP
Name	UTAIT	START Device selection data dvc_dat[7:0]					Register : reg_	selecti _dat[7:	ion da :0]	ta	ĝ		li	ght_c	dat0[7	7:0] ´		lo			light_d	lat95[7:0]	,	Ő	0101
SDO	0		1			0			1				0			<i>N</i>				0			1			
Name	(Open)	pen) (Open)			ACK		(0	Open)			ACK			(0	pen)			AÒ	ĸ		(0)pen)			ACK	(Open)

Wo	rd le	engt	h: 1;	gra	Idati	on c	data:	: 4-b	it de	esigi	natio	on																
10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	\mathbb{N}	442	443	444	445	446	447	448	449	450		
ſ	t.	Lf	ſ	Î	Ĵ	ſ	Ĵ	ſ	ſ	ſ	Ĵ	ſ	Ĵ	ſ	Î	ſ	X/	ſ	ſ	Î	ſ	ſ	ſ	ſ	ſ	ſ		
1								1									1)									1		ſ
Word length		Register address								latior	n data	a (0) :01	Grad lig	latior ht d	n data at1/3	a (1) :01	Head	Grac	lation ht da	data	ι (94) 3:01	Grad	datior ht d	n dat at95	a (95) [3:0]	(Open)		
	Register selection data reg_dat[7:0]							(Open)			[1				1	<u>(</u> 0				1	9			[0.0]	0		
	0							1					0				Ň					0				1		0
	(Open)							ACK				(Op	en)				AQK				(Op	en)				ACK	(Open)

8

Command System

Device Designation

If the device ID and device address match IC settings, received data are retrieved. Device ID is fixed as "010". The same command can be transmitted to all devices by designating "1111" as device address. The relationship between device address and device address terminal is shown in the table below.

			Dev	ice selection	data dvc_dat ((7:0)		
Communication mode	7	6	5	4	3	2	1	0
		Device ID			Device	Address		RW
Standard	0	1	0		1(1:0)		D(1:0)	0
SP-D7	0	1	0	ADR	1(1.0)	ADR	5(1.0)	

Register Designation

Communication mode			Regi	ister Selection	n data reg_dat	(7:0)						
Communication mode	7	6	5	4	3	2	1	0				
Standard	Word Length				Pogistor Addrog							
SP-D7	Register Address											

Word length designation	Word length
0	8bit
1	4bit

Word Length

The data unit of gradation data is designated.

Register Address (Designation of lighting position)

The address of gradation register is designated. The upper limit of address that can be designated, and the number of gradation that can be transferred continuously, vary according to division mode setting and word length designation.

Register address (Special address)

All gradation registers can be designated collectively by designating 0x7F (127). The power saving register can be designated by designating 0x78 (120)

Gradation Data

Communication mode			(Gradation data	a light_dat(7:	0)						
Communication mode	7	6	5	4	3	2	1	0				
Standard (8-bit)		Gradation Data										
Standard (4-bit)		Gradatio	n Data N			Gradation	Data N+1					
SP-D7				Gradation Data	a							

Gradation Designation

Gradation data are designated using 8 bits (256 gradations), 7 bits (128 gradations), or 4 bits (16 gradations).

Power-saving Mode

When the power-saving data register is designated by register address-bits, the lowest 4 bits are treated as power-saving data.

Communication	Gradation data light_dat(7:0)							
mode	7	6	5	4	3	2	1	0
Standard	0	0	0	0	Power-sa	vingdata	Power-sa	ivingdata
SP-D7		0	0	0	(current	control)	(duty rati	o control)

Power-saving Data	Output current or output duty ratio
00	100%
01	75%
10	50%
11	25%

Gradation Control

Designation of Gradation

Gradation is designated using a data length of 8 bits (256 gradations), 7 bits (128 gradations), or 4 bits (16 gradations). The 8-bit or 4-bit mode can be selected using a word length bit in a communication command. In case of the 4-bit mode, the overall data length for communication can be shortened, though only a small number of gradations can be designated. In case of SP-D7 mode in serial communication with address, the word length is fixed at 7 bits, i.e., it is not designated.

Communication mode	Word length	Gradation number
Serial communication with address	8-bit mode	256
(SP-D8)	4-bit mode	16
Serial communication with address (SP-D7)		128
Serial communication with address	8-bit mode	256
(CE-D8)	4-bit mode	16
I ² C-based serial communication (I ² C)	8-bit mode	256
TC-based serial communication (TC)	4-bit mode	16

The relationship between lighting gradation and output duty ratio is shown below;

Lighting Gradation vs. Output Duty Ratio (Representative Values Only)

(Representative values Only)								
Lighting gradation	Lighting gradation	Lighting gradation		Matrix cor	nfiguration			
(8-bit)	(7-bit)	(4-bit)	24x1	24x2	24x4	16x8		
0	0	0	(Light-out)	(Light-out)	(Light-out)	(Light-out)		
15	7		0.37%	0.18%	0.09%	0.05%		
31	15	1	0.76%	0.38%	0.19%	0.09%		
47	23	2	1.15%	0.57%	0.29%	0.14%		
63	31	3	1.54%	0.77%	0.38%	0.19%		
79	39	4	2.29%	1.15%	0.57%	0.29%		
95	47	5	3.08%	1.54%	0.77%	0.38%		
111	55	6	4.59%	2.29%	1.15%	0.57%		
127	63	7	6.15%	3.08%	1.54%	0.77&		
143	71	8	9.18%	4.59%	2.29%	1.15%		
159	79	9	12.30%	6.15%	3.08%	1.54%		
175	87	10	18.36%	9.18%	4.59%	2.29%		
191	95	11	24.61%	12.30%	6.15%	3.08%		
207	103	12	36.72%	18.36%	9.18%	4.59%		
223	111	13	49.22%	24.61%	12.30%	6.15%		
239	119	14	73.44%	36.72%	18.36%	9.18%		
255	127	15	98.44%	49.22%	24.61%	12.30%		

Lighting Gradation vs. Output Duty Ratio (All Gradations)

Gradation	Gradation	Gradation		Matrix cor	figuration	1
(8-bit)	(7-bit)	(4-bit)	24x1	24x2	24x4	16x8
0	0	0	(Light-out)	(Light-out)	(Light-out)	(Light-out)
1			0.02	0.01	0.01	0.00
2			0.05	0.02	0.01	0.01
3	1		0.07	0.04	0.02	0.01
4			0.10	0.05	0.02	0.01
5	2		0.12	0.06	0.03	0.02
6			0.15	0.07	0.04	0.02
7	3		0.17	0.09	0.04	0.02
8			0.20	0.10	0.05	0.02
9	4		0.22	0.11	0.05	0.03
10			0.24	0.12	0.06	0.03
11	5		0.27	0.13	0.07	0.03
12			0.29	0.15	0.07	0.04
13	6		0.32	0.16	0.08	0.04
14			0.34	0.17	0.09	0.04
15	7		0.37	0.18	0.09	0.05
16			0.39	0.20	0.10	0.05
17	8		0.42	0.21	0.10	0.05
18			0.44	0.22	0.11	0.05
10	9		0.44	0.22	0.12	0.06
20			0.49	0.20	0.12	0.06
21	10		0.51	0.26	0.13	0.06
22			0.54	0.27	0.13	0.07
23	11		0.56	0.28	0.14	0.07
24			0.59	0.29	0.15	0.07
25	12		0.61	0.31	0.15	0.08
26			0.63	0.32	0.16	0.00
27	13		0.66	0.33	0.10	0.00
28			0.68	0.34	0.10	0.00
29	14		0.00	0.35	0.17	0.09
30			0.73	0.37	0.10	0.00
31	15	1	0.76	0.38	0.10	0.03
31			0.78	0.39	0.19	0.09
33	16		0.70	0.33	0.20	0.10
34			0.83	0.40	0.20	0.10
34	17		0.85	0.42	0.21	0.10
36			0.85	0.43	0.21	0.11
30	18		0.88	0.44	0.22	0.11
37			0.90	0.45	0.23	0.11
39	19		0.95	0.40	0.23	0.12
40			0.95	0.48	0.24	0.12
40			1.00		0.24	-
	20			0.50		0.13
42			1.03	0.51	0.26	0.13
43	21		1.05	0.52	0.26	0.13
L			1.07	0.54	0.27	0.13
45	22		1.10	0.55	0.27	0.14
46			1.12	0.56	0.28	0.14
47	23	2	1.15	0.57	0.29	0.14
48			1.17	0.59	0.29	0.15
49	24		1.20	0.60	0.30	0.15
50			1.22	0.61	0.31	0.15
51	25		1.25	0.62	0.31	0.16
52			1.27	0.63	0.32	0.16
53	26		1.29	0.65	0.32	0.16
54			1.32	0.66	0.33	0.16
55	27		1.34	0.67	0.34	0.17
56			1.37	0.68	0.34	0.17
57	28		1.39	0.70	0.35	0.17
58			1.42	0.71	0.35	0.18
59	29		1.44	0.72	0.36	0.18
60			1.46	0.73	0.37	0.18
61	30		1.49	0.74	0.37	0.19
62			1.51	0.76	0.38	0.19
63	31	3	1.54	0.77	0.38	0.19

Gradation	Gradation	Gradation		Matrix cor	nfiguration	
(8-bit)	(7-bit)	(4-bit)	24x1	24x2	24x4	16x8
64			1.56	0.78	0.39	0.20
65	32		1.61	0.81	0.40	0.20
66			1.66	0.83	0.42	0.21
67	33		1.71	0.85	0.43	0.21
68			1.76	0.88	0.44	0.22
69	34		1.81	0.90	0.45	0.23
70			-		0.45	0.23
-			1.86	0.93		
71	35		1.90	0.95	0.48	0.24
72			1.95	0.98	0.49	0.24
73	36		2.00	1.00	0.50	0.25
74			2.05	1.03	0.51	0.26
75	37		2.10	1.05	0.52	0.26
76			2.15	1.07	0.54	0.27
77	38		2.20	1.10	0.55	0.27
78			2.25	1.12	0.56	0.28
79	39	4	2.29	1.15	0.57	0.29
80			2.34	1.17	0.59	0.29
81	40		2.39	1.20	0.60	0.30
82			2.44	1.20	0.61	0.31
83	41		2.44	1.22	0.61	0.31
			-			
84			2.54	1.27	0.63	0.32
85	42		2.59	1.29	0.65	0.32
86			2.64	1.32	0.66	0.33
87	43		2.69	1.34	0.67	0.34
88			2.73	1.37	0.68	0.34
89	44		2.78	1.39	0.70	0.35
90			2.83	1.42	0.71	0.35
91	45		2.88	1.44	0.72	0.36
92			2.93	1.46	0.73	0.37
93	46		2.98	1.49	0.74	0.37
94			3.03	1.51	0.76	0.38
95	47	5	3.08	1.54	0.77	0.38
96			3.13	1.54	0.78	0.39
97	48		3.22	1.61	0.70	0.33
-	-		-			
98			3.32	1.66	0.83	0.42
99	49		3.42	1.71	0.85	0.43
100			3.52	1.76	0.88	0.44
101	50		3.61	1.81	0.90	0.45
102			3.71	1.86	0.93	0.46
103	51		3.81	1.90	0.95	0.48
104			3.91	1.95	0.98	0.49
105	52		4.00	2.00	1.00	0.50
106			4.10	2.05	1.03	0.51
107	53		4.20	2.10	1.05	0.52
108			4.30	2.15	1.07	0.54
109	54		4.39	2.20	1.10	0.55
110			4.49	2.25	1.10	0.56
111		6	4.49	2.23	1.12	0.50
	55					
112			4.69	2.34	1.17	0.59
113	56		4.79	2.39	1.20	0.60
114			4.88	2.44	1.22	0.61
115	57		4.98	2.49	1.25	0.62
116			5.08	2.54	1.27	0.63
117	58		5.18	2.59	1.29	0.65
118			5.27	2.64	1.32	0.66
119	59		5.37	2.69	1.34	0.67
120			5.47	2.73	1.37	0.68
121	60		5.57	2.78	1.39	0.70
121			5.66	2.83	1.42	0.70
122				-		
	61		5.76	2.88	1.44	0.72
124			5.86	2.93	1.46	0.73
125	62		5.96	2.98	1.49	0.74
126			6.05	3.03	1.51	0.76
	63	7	6.15	3.08	1.54	0.77

Lighting Gradation vs. Output Duty Ratio (All Gradations - continued)

Gradation	Gradation	Gradation		Matrix cor	figuration	1
(8-bit)	(7-bit)	(4-bit)	24x1	24x2	24x4	16x8
128			6.25	3.13	1.56	0.78
129	64		6.45	3.22	1.61	0.81
130			6.64	3.32	1.66	0.83
131	65		6.84	3.42	1.71	0.85
132			7.03	3.52	1.76	0.88
133	66		7.23	3.61	1.81	0.90
134			7.42	3.71	1.86	0.93
135	67		7.62	3.81	1.90	0.95
135			7.81	3.91	1.90	0.95
137	68		8.01	4.00	2.00	1.00
138			8.20	4.10	2.05	1.03
139	69		8.40	4.20	2.10	1.05
140			8.59	4.30	2.15	1.07
141	70		8.79	4.39	2.20	1.10
142			8.98	4.49	2.25	1.12
143	71	8	9.18	4.59	2.29	1.15
144			9.38	4.69	2.34	1.17
145	72		9.57	4.79	2.39	1.20
146			9.77	4.88	2.44	1.22
147	73		9.96	4.98	2.49	1.25
148			10.16	5.08	2.54	1.27
149	74		10.35	5.18	2.59	1.29
150			10.55	5.27	2.64	1.32
151	75		10.33	5.37	2.69	1.34
152			10.74	5.47	2.03	1.34
				-	-	-
153	76		11.13	5.57	2.78	1.39
154			11.33	5.66	2.83	1.42
155	77		11.52	5.76	2.88	1.44
156			11.72	5.86	2.93	1.46
157	78		11.91	5.96	2.98	1.49
158			12.11	6.05	3.03	1.51
159	79	9	12.30	6.15	3.08	1.54
160			12.50	6.25	3.13	1.56
161	80		12.89	6.45	3.22	1.61
162			13.28	6.64	3.32	1.66
163	81		13.67	6.84	3.42	1.71
164			14.06	7.03	3.52	1.76
165	82		14.45	7.23	3.61	1.81
166			14.84	7.42	3.71	1.86
167	83		15.23	7.62	3.81	1.90
168			15.63	7.81	3.91	1.95
						2.00
169	84		16.02	8.01	4.00	
170			16.41	8.20	4.10	2.05
171	85		16.80	8.40	4.20	2.10
172			17.19	8.59	4.30	2.15
173	86		17.58	8.79	4.39	2.20
174			17.97	8.98	4.49	2.25
175	87	10	18.36	9.18	4.59	2.29
176			18.75	9.38	4.69	2.34
177	88		19.14	9.57	4.79	2.39
178			19.53	9.77	4.88	2.44
179	89		19.92	9.96	4.98	2.49
180			20.31	10.16	5.08	2.54
181	90		20.70	10.35	5.18	2.59
182			21.09	10.55	5.27	2.64
183	91		21.03	10.33	5.37	2.69
184				10.74		2.09
			21.88		5.47	
185	92		22.27	11.13	5.57	2.78
186			22.66	11.33	5.66	2.83
187	93		23.05	11.52	5.76	2.88
188			23.44	11.72	5.86	2.93
189	94		23.83	11.91	5.96	2.98
190			24.22	12.11	6.05	3.03
191	95	11	24.61	12.30	6.15	3.08

Gradation	Gradation	Gradation		Matrix cor	figuration	1
(8-bit)	(7-bit)	(4-bit)	24x1	24x2	24x4	16x8
192			25.00	12.50	6.25	3.13
193	96		25.78	12.89	6.45	3.22
194			26.56	13.28	6.64	3.32
195	97		27.34	13.67	6.84	3.42
196			28.13	14.06	7.03	3.52
197	98		28.91	14.45	7.23	3.61
198			29.69	14.84	7.42	3.71
199	99		30.47	15.23	7.62	3.81
200			31.25	15.63	7.81	3.91
201	100		32.03	16.02	8.01	4.00
202			32.81	16.41	8.20	4.10
203	101		33.59	16.80	8.40	4.20
204			34.38	17.19	8.59	4.30
205	102		35.16	17.58	8.79	4.39
206			35.94	17.97	8.98	4.49
207	103	12	36.72	18.36	9.18	4.59
208			37.50	18.75	9.38	4.69
209	104		38.28	19.14	9.57	4.79
210			39.06	19.53	9.77	4.88
211	105		39.84	19.92	9.96	4.98
212			40.63	20.31	10.16	5.08
213	106		41.41	20.70	10.35	5.18
214			42.19	21.09	10.55	5.27
215	107		42.97	21.48	10.74	5.37
216			43.75	21.88	10.94	5.47
217	108		44.53	22.27	11.13	5.57
218			45.31	22.66	11.33	5.66
219	109		46.09	23.05	11.52	5.76
220			46.88	23.44	11.72	5.86
221	110		47.66	23.83	11.91	5.96
222			48.44	24.22	12.11	6.05
223	111	13	49.22	24.61	12.30	6.15
224 225			50.00 51.56	25.00 25.78	12.50 12.89	6.25 6.45
225	112				12.69	6.64
220	113		53.13 54.69	26.56 27.34	13.20	6.84
228			56.25	28.13	14.06	7.03
220	114		57.81	28.91	14.00	7.03
229			59.38	29.69	14.43	7.42
231	115		60.94	30.47	15.23	7.62
232			62.50	31.25	15.63	7.81
233	116		64.06	32.03	16.02	8.01
234			65.63	32.81	16.41	8.20
235	117		67.19	33.59	16.80	8.40
236			68.75	34.38	17.19	8.59
237	118		70.31	35.16	17.58	8.79
238			71.88	35.94	17.97	8.98
239	119	14	73.44	36.72	18.36	9.18
240			75.00	37.50	18.75	9.38
241	120		76.56	38.28	19.14	9.57
242			78.13	39.06	19.53	9.77
243	121		79.69	39.84	19.92	9.96
244			81.25	40.63	20.31	10.16
245	122		82.81	41.41	20.70	10.35
246			84.38	42.19	21.09	10.55
247	123		85.94	42.97	21.48	10.74
248			87.50	43.75	21.88	10.94
249	124		89.06	44.53	22.27	11.13
250			90.63	45.31	22.66	11.33
251	125		92.19	46.09	23.05	11.52
252			93.75	46.88	23.44	11.72
253	126		95.31	47.66	23.83	11.91
254			96.88	48.44	24.22	12.11
255	127	15	98.44	49.22	24.61	12.30

Designation of Lighting Position

The lighting position is designated with a register address in a communication command. The relationship between register address and lighting position in each matrix configuration is shown in the table below.

		N/	atrix Con	figuration				M	atrix Con	figuration	
Register		Matrix Configuration Matrix Configuration 16x8 Register 16x8									
Address	24x1	24x2	24x4	Even-number row	Odd-number row	Address	24x1	24x2	24x4	Even-number row	Odd-number row
0x00 (0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(1, 0)	0x30 (48)			(0, 2)	(0, 6)	(1, 6)
0x00 (0) 0x01 (1)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(1, 0)	0x31 (49)			(1, 2)	(0, 0)	(3, 6)
0x02 (2)	(1,0)	(1, 0)	(1, 0)	(2, 0)	(5, 0)	0x31 (43) 0x32 (50)			(1, 2)	(4, 6)	(5, 6)
0x02 (2) 0x03 (3)	(2, 0)	(2, 0)	(2, 0)	(4, 0)	(3, 0)	0x32 (50)			(2, 2)		(7, 6)
. ,				,		0x33 (51) 0x34 (52)			,	(6, 6)	
0x04 (4)	(4, 0)	(4, 0)	(4, 0)	(8, 0)	(9, 0)				(4, 2)	(8, 6)	(9, 6)
0x05 (5)	(5, 0)	(5, 0)	(5, 0)	(10, 0)		0x35 (53)			(5, 2)	(10, 6)	(11, 6)
0x06 (6)	(6, 0)	(6, 0)	(6, 0)	(12, 0)	(13, 0)	0x36 (54)			(6, 2)	(12, 6)	(13, 6)
0x07 (7) 0x08 (8)	(7, 0) (8, 0)	(7, 0) (8, 0)	(7, 0) (8, 0)	(14, 0) (0, 1)	(15, 0)	0x37 (55) 0x38 (56)			(7, 2) (8, 2)	(14, 6) (0, 7)	(15, 6) (1, 7)
0x08 (8) 0x09 (9)	(8, 0)	(8, 0)	(8, 0)	(0, 1)	(1, 1) (3, 1)	0x39 (57)			(0, 2)	(0, 7)	(1, 7)
. ,	. ,	,	,			,			,		
0x0A (10) 0x0B (11)	(10, 0)	(10, 0)	(10, 0)	(4, 1)	(5, 1)	0x3A (58)			(10, 2)	(4, 7)	(5, 7)
. ,	(11, 0)	(11, 0)	(11, 0)	(6, 1)	(7, 1)	0x3B (59)			(11, 2)	(6, 7)	(7, 7)
0x0C (12)	(12, 0)	(12, 0)	(12, 0)	(8, 1)	(9, 1)	0x3C (60)			(12, 2)	(8, 7)	(9, 7)
0x0D (13)	(13, 0)	(13, 0)	(13, 0)	(10, 1)	(11, 1)	0x3D (61)			(13, 2)	(10, 7)	(11, 7)
0x0E (14)	(14, 0)	(14, 0)	(14, 0)	(12, 1)	(13, 1)	0x3E (62) 0x3F (63)			(14, 2)	(12, 7)	(13, 7)
0x0F (15)	(15, 0)	(15, 0)	(15, 0)	(14, 1)	(15, 1)	(/			(15, 2)	(14, 7)	(15, 7)
0x10 (16)	(16, 0)	(16, 0)	(16, 0)	(0, 2)	(1, 2)	0x40 (64)			(16, 2)		
0x11 (17)	(17, 0)	(17, 0)	(17, 0)	(2, 2)	(3, 2)	0x41 (65)			(17, 2)		
0x12 (18)	(18, 0)	(18, 0)	(18, 0)	(4, 2)	(5, 2)	0x42 (66)			(18, 2)		
0x13 (19)	(19, 0)	(19, 0)	(19, 0)	(6, 2)	(7, 2)	0x43 (67)			(19, 2)		
0x14 (20)	(20, 0)	(20, 0)	(20, 0)	(8, 2)	(9, 2)	0x44 (68)			(20, 2)		
0x15 (21)	(21, 0)	(21, 0)	(21, 0)	(10, 2)	(11, 2)	0x45 (69)			(21, 2)		
0x16 (22)	(22, 0)	(22, 0)	(22, 0)	(12, 2)	(13, 2)	0x46 (70)			(22, 2)		
0x17 (23)	(23, 0)	(23, 0)	(23, 0)	(14, 2)	(15, 2)	0x47 (71)			(23, 2)		
0x18 (24)		(0, 1)	(0, 1)	(0, 3)	(1, 3)	0x48 (72)			(0, 3)		
0x19 (25)		(1, 1)	(1, 1)	(2, 3) (4, 3)	(3, 3)	0x49 (73)			(1, 3)		
0x1A (26) 0x1B (27)		(2, 1) (3, 1)	(2, 1) (3, 1)	(4, 3)	(5, 3) (7, 3)	0x4A (74) 0x4B (75)			(2, 3) (3, 3)		
. ,			,			()			,		
0x1C (28) 0x1D (29)		(4, 1) (5, 1)	(4, 1) (5, 1)	(8, 3) (10, 3)	(9, 3) (11, 3)	0x4C (76) 0x4D (77)			(4, 3) (5, 3)		
0x1D (29) 0x1E (30)		(6, 1)	(6, 1)	(10, 3)	(11, 3)	0x4D (77) 0x4E (78)			(6, 3)		
. ,			,	(12, 3)		0x4E (78)			,		
0x1F (31) 0x20 (32)		(7, 1) (8, 1)	(7, 1)	(14, 3)	(15, 3)	0x50 (80)			(7, 3) (8, 3)		
0x20 (32) 0x21 (33)		(0, 1)	(8, 1) (9, 1)	(0, 4)	(1, 4) (3, 4)	0x51 (81)			(9, 3)		
0x21 (33) 0x22 (34)		(10, 1)	(10, 1)		(5, 4)	0x51 (81)			(10, 3)		
0x22 (34) 0x23 (35)		(10, 1)	(10, 1)	(4, 4) (6, 4)	(5, 4)	0x52 (82)			(10, 3)		
0x23 (33) 0x24 (36)		(11, 1)	(11, 1)	(8, 4)	(7, 4)	0x54 (84)			(11, 3)		
0x24 (30) 0x25 (37)		(12, 1)		(10, 4)	(11, 4)	0x55 (85)			(12, 3)		
0x26 (37)		(13, 1)	(13, 1) (14, 1)	(10, 4)	(11, 4)	0x56 (86)			(13, 3)		
0x20 (30) 0x27 (39)		(14, 1)	(14, 1)	(12, 4)	(15, 4)	0x57 (87)			(14, 3)		
0x28 (40)		(16, 1)	(16, 1)	(0, 5)	(1, 5)	0x58 (88)			(16, 3)		
0x20 (40) 0x29 (41)		(17, 1)	(17, 1)	(0, 5)	(1, 5)	0x59 (89)			(17, 3)		
0x23 (41) 0x2A (42)						0x5A (90)					
0x2A (42) 0x2B (43)		(18, 1) (19, 1)	(18, 1)	(4, 5) (6, 5)	(5, 5)	0x5A (90) 0x5B (91)			(18, 3) (19, 3)		
0x2B (43) 0x2C (44)			(19, 1)	(8, 5)	(7, 5)	0x5C (92)			,		
0x2C (44) 0x2D (45)		(20, 1) (21, 1)	(20, 1)	(10, 5)	(9, 5) (11, 5)	0x5D (92)			(20, 3) (21, 3)		
0x2E (45)		(21, 1)	(22, 1)	(10, 5)	(13, 5)	0x5E (93)			(21, 3)		
0x2E (40) 0x2F (47)		(22, 1)	(22, 1)	(12, 5)	(15, 5)	0x5F (95)			(22, 3)		
JALI (47)		(20, 1)	(20, 1)	(17, 5)	(13, 3)	0,01 (00)			(20, 0)		

Gradation data can be transmitted continuously (continuous transfer). In this case, gradation data are stored sequentially, with the register address designated at first at the top. Gradation data cannot be transmitted to a register address that is not found in matrix configurations (wrong address). Communication is terminated if a wrong address is designated, or if a wrong address is reached in continuous transfer of gradation data.

Note: When a 16x8-mode matrix configuration is used, an LED shown in an odd-number row in the table above cannot be designated as the first address. Gradation data can be transmitted only via continuous transfer to a register address in an odd-number row.

OUTS7

7

Matrix Configuration An LED Matrix configuration can be chosen from among 24x1, 24x2, 24x4 and 16x8 configurations, using division mode setting terminal DIV. Indication of Lighting Position

Examples of circuits in different matrix configurations are shown in the following: 16 x 8 Configuration VCC

24 x 2 Configuration vcc

24 x 1 Configuration

Control Waveform

The matrix is controlled by switching between ON and OFF of drive output terminals (OUT0R - 7B) and switch output terminals (OUTS0 - 7).

Control Waveform (Overall)

Control Waveform (at Switching)

Note: XTI = 8.192 MHz = 122.07 ns. The indication of duration in these figures is for 16x8 configuration. The duration is twice the indicated value for 24x4 configuration; 4 times for 24x2 configuration; and 8 times for 24x1 configuration.

Drive Output Group

Adjoining drive output terminals (OUT0R - 7B) have different change timings. This difference is designed to reduce noise caused by the simultaneous change of drive output. There are 4 change timings, by which drive outputs are grouped as follows:

Drive output terminal	Drive output group								
terminal	OUTX-a	OUTX-b	OUTX-c	OUTX-d					
OUTOR	0								
OUT0G		0							
OUT0B			0						
OUT1R				0					
OUT1G	0								
OUT1B		0							
OUT2R			0						
OUT2G				0					
OUT2B	0								
OUT3R		0							
OUT3G			0						
OUT3B				0					
OUT4R	0								
OUT4G		0							
OUT4B			0						
OUT5R				0					
OUT5G	O(*)								
OUT5B		O(*)							
OUT6R			O(*)						
OUT6G				O(*)					
OUT6B	O(*)								
OUT7R		O(*)							
OUT7G			O(*)						
OUT7B				O(*)					

Note: *This does not apply when the division mode is set as 16x8 configuration, in which case the following operations are executed: OUT5G - 6G: Not used.

OUT6B - OUT7B: Functions as OUTS4 - 7

Synchronous Control Output

Synchronous control output terminal (OUTDC) outputs control signals synchronized with lighting switch. These signals are used to drive external circuits at lighting switch.

Power-saving Control

Power saving data is set, via communications as 100%, 75%, 50% or 25%. Current or duty ratio control is used as control method. Power saving data can be set separately via either of these methods.

Current Control

Output currents are changed collectively according to a designated ratio to a current set with current setting terminal REXTR/REXTG/REXTB.

Note: The hue of a full-color LED in normal operation may be different from that in power-saving operation, due to differences in current characteristics among R/G/B.

Duty Ratio Control

Output duty ratios are changed collectively according to a designated ratio to a duty ratio designated to a particular gradation.

■ Application Example

Setting Example

C	DIV:		
CC	I ² C communication		
AI	DR:	device address "1101"	
	R:	59.5 mA (14.9 mA)	
Constant current setting	G:	77.6 mA (19.4 mA)	
	B:	41.3 mA (10.3 mA)	

Note: Effective values are shown in parentheses.

Dimensions

Tape Packaging Packaging style: Embossed taping Packaging quantity: 1,500 pcs/reel

Direction of Insertion

Embossed Tape Dimensions

Correct Use

- The absolute maximum rating is the limit value which should not be exceeded even momentarily. Exceeding this value can cause deterioration of the characteristics or complete failure of the IC.
- Check the operation at the communication frequency to be used before using the device.
- Sufficiently take into consideration the static electricity, chattering and voltage of the input to be connected when determining each input circuit.
- Although the device contains an ESD protection circuit, static electricity that exceeds the function may damage the device. When handling the device, exercise due caution by, for example, grounding the body of the handler.
- Execute thermal design providing for a sufficient margin, by considering allowable dissipation in the actual operating condition. If a high voltage is applied to IC (e.g. due to a small number of driven series LEDs), heating of the IC can be controlled by inserting a resistance to disperse power dissipation.
- A thermal shutdown circuit is built in this IC. If chip temperature has risen abnormally, this circuit works to open output terminals. The original condition is restored when chip temperature has decreased to a normal level. As this circuit is provided as protection in the event of emergency, do not use it on a regular basis.
- Due to potential damage, do not use product that has been dropped or that has come into contact with water.

■ Cautions on Mounting

Mounting on a Flexible Substrate

When mounting the product on a flexible substrate, a reed may be detached after mounting due to stress transmitted through the substrate. Therefore, it is recommended to use, for mounting, a reinforced substrate or an underfill, etc.

Reworking with a Soldering Iron

The user is strictly admonished against the use of soldering iron for rework. Such a use may cause mold cracking or open terminals.

Recommended Reflow Conditions

Allowable Temperature Profile Conditions

Product mounting method should be by Reflow and we recommend the following temperature profile. Reflow no more than twice.

Storage Conditions before Mounting

Moisture absorption by the plastic package will increase the possibility of faults, such as cracks; therefore, take enough care for storage.

	Storage Conditions	Period
Before moisture-proof package is opened	5 to 30°C, 40 to 70%RH	1 Year
After moisture-proof package is opened	5 to 30°C, 40 to 70%RH	168 hours

Recommended Drying Conditions

If the allowable storage period after opening a moisture-proof package has been exceeded, dry the products under the following conditions before mounting them:

Temperature	Time	Frequency						
60°C	72 hours	Once or twice						

■ RoHS Directive Compliance

Models that are indicated as being RoHS compliant do not exceed the threshold value for the following six substances.

_ead:	1,000 ppm max.
Mercury:	1,000 ppm max.
Cadmium:	100 ppm max.
Hexavalent chromium:	1,000 ppm max.
PBB:	1,000 ppm max.
PBDE:	1,000 ppm max.

L

Ν

C F

F

Lot Code Indication

Production year: The last digit of the calendar year

																										ME	EMO
		—	T	T —	· · · · ·	·	 											T —	— 	 I	г — I	1 —	— - 	г — I		—	
		' 	 	 		L .	 		') <u> </u>	 	 			 	L		' 	 	L '		
- -			· -	- 	·		- 	- 	· ·	·	- 			· _			· 	· 				- 	; <u> </u>		- 	—	
\vdash \dashv			+ -	+		\vdash	+ -				+ —	—		+ -			+ -	+ —	—	⊢ -	+ -					—	
			Ļ _	↓			⊥ _			Ļ _	↓		L _	⊢ _			Ļ _	↓		L _	∟ _			L _	L _		
									I																		
			 	 +			 	 		 	·		<u> </u>					 + —		 	 			 			
			1	1		1	1		1									1				1				i I	
		— 	+ 	+	· —		+ -	-1	— ·	 				+			+ 		— 		⊢ — ∣		— - 	⊢ — ∣		— 1	
		' 		<u> </u>	·'	L	 	-' 	' 	<u> </u>	 	' <u> </u>	' 	<u> </u>	! 	' ·	<u> </u>	<u> </u>	' <u>—</u> 	' 	<u> </u>	!	' 	<u> </u>	'		
			<u> </u>	<u> </u>			<u> </u>	<u>_</u>			<u> </u>	—		-			<u> </u>	<u> </u>	- 		- _	1 -	— ·			—	
\vdash \dashv			+ -	+	-	-	+ -				+	—	├	+ -				+ —	—	⊢ -	⊢ −				+	—	⊢ ⊣
			⊥ _	⊥ _			⊥ _				⊥ _			L _	_			⊥ _		L _							
			† -	† —	. —		+ -	1 —		 	† —			† –	1 —			† —				1 —				—	
		 	+ 	+	·	 	+ -											+		⊢ – ∣	⊢ — ∣		 	↓ I	 	— I	
		'	<u>-</u> -	<u>+</u>	·'	<u> </u>	<u> </u>	<u> </u>	' ·	<u> </u>	÷ —			<u> </u>	-		<u> </u>	<u> </u>	' <u>—</u>	<u> </u>	<u> </u>	<u> </u>	'— ·	<u> </u>	'		
				+ -	- —		+ -	1-	·									+	—		- 	1-				—	
⊢ —			+ -	+	·		+ -				+ —	—		+ -	·			+ —			-			- -	- I	_	
											_							<u> </u>			<u> </u>						
			1																								
			+ -	+	· —	- ·	+ -			 	+	—		+ -			+ -	† —	—	 		1 —				—	
	<u> </u>	 	 -		·	L .		-l		 	+		L -	⊥ ।		 	⊥ _ ∣	⊥ 		L _ 	L		 	L _ I	L 	[
			<u>-</u> -	<u> </u>		<u> </u>	<u> </u>		¦	<u> </u>	<u>-</u> _	`—		<u> </u>		·	<u> </u>	<u> </u>		 	<u> </u>	-	¦	<u> </u>			
		—	+ -	+	- —		+ -	1 —	— ·	' 	; † —	—		+ -		— ·	- 	+ —	—	' 		-	— -			—	
			Ļ -	+		L .	+ -			Ļ _	+		L -	Ļ _			Ļ _	+		L -	⊢ _			L _			
			<u> </u>			<u> </u>				<u> </u>											<u> </u>			<u> </u>			
			Τ -																				— ·				
			+ 1	+	·		+ -							+ - 					— 		 		— - 	 		— I	
		 	 		.	L	 	_!											 	L 	L	」	' 	L I	L 	!	
			<u>-</u> -	<u> </u>	·																		¦				
			Ļ _	↓ _			L _			L _	↓		L _	Ļ _			Ļ _	↓		L _	L _			L _	L _		
			<u> </u>																								
			† -																								
			+ -	+	·	 	+ -																— -	⊢ — '	 		
			<u> </u>	<u> </u>	.	<u> </u>	<u> </u>			. –								<u> </u>			<u> </u>	<u> </u>	' I	<u> </u>	<u> </u>		
		' 	- -	<u> </u>	·			' —	·					·			·	т —		· 	- 	' —	¦				
			上 _		.															L	L	J		L _	L		