SDAS061C - APRIL 1982 - REVISED JANUARY 1995 - 3-State Buffer-Type Outputs Drive Bus Lines Directly - Bus-Structured Pinout - Choice of True or Inverting Logic - SN54ALS874B, SN74ALS874B, SN74AS874 Have True Outputs - SN74ALS876A, SN74AS876 Have Inverting Outputs - Asynchronous Clear - Package Options Include Plastic Small-Outline (DW) Packages, Plastic (FN) and Ceramic (FK) Chip Carriers, and Standard Plastic (NT) and Ceramic (JT) 300-mil DIPs #### description These dual 4-bit D-type edge-triggered flip-flops feature 3-state outputs designed specifically as bus drivers. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The edge-triggered flip-flops enter data on the low-to-high transition of the clock (CLK) input. The SN54ALS874B, SN74ALS874B, and SN74AS874 have clear ($\overline{\text{CLR}}$) inputs and noninverting Q outputs. The SN74ALS876A and SN74AS876 have preset $\overline{\text{(PRE)}}$ inputs and inverting $\overline{\text{Q}}$ outputs; taking $\overline{\text{PRE}}$ low causes the four Q or $\overline{\text{Q}}$ outputs to go low independently of the clock. The SN54ALS874B is characterized for operation over the full military temperature range of -55° C to 125°C. The SN74ALS874B, SN74ALS876A, SN74AS874, and SN74AS876 devices are characterized for operation from 0°C to 70°C. #### SN54ALS874B . . . JT PACKAGE SN74ALS874B, SN74AS874 . . . DW OR NT PACKAGE (TOP VIEW) ## SN54ALS874B . . . FK PACKAGE (TOP VIEW) NC - No internal connection ## SN74ALS876A, SN74AS876 . . . DW OR NT PACKAGE (TOP VIEW) #### **Function Tables** ## SN54ALS874B, SN74ALS874B, SN74AS874 (each flip-flop) | | INP | OUTPUT | | | |----|-----|------------|---|-------| | OE | CLR | CLK | D | Q | | L | L | Х | Χ | L | | L | Н | \uparrow | Н | Н | | L | Н | \uparrow | L | L | | L | Н | L | Χ | Q_0 | | Н | X | X | X | Z | ## SN74ALS876A, SN74AS876 (each flip-flop) | | INP | | OUTPUT | | |----|-----|------------|--------|------------------| | OE | PRE | CLK | D | Q | | L | L | Х | Χ | L | | L | Н | \uparrow | Н | L | | L | Н | \uparrow | L | Н | | L | Н | L | Χ | \overline{Q}_0 | | Н | X | X | Χ | Z | ### logic symbols† ## SN54ALS874B, SN74ALS874B, SN74AS874 ### SN74ALS876A, SN74AS876 [†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the DW, JT, and NT packages. #### logic diagrams (positive logic) ## SN54ALS874B, SN74ALS874B, SN74AS874 (each quad flip-flop) ## ŌĒ **CLK** CLR > C1 Q1 D1 1D R > C1 Q2 D2 1D R > C1 Q3 D3 1D R D4 1D ## SN74ALS876A, SN74AS876 (each quad flip-flop) Pin numbers shown are for the DW, JT, and NT packages. ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage, V _{CC} | | | | |--|----------------|-------------|--------------------| | Input voltage, V _I | | |
7 V | | Voltage applied to a disabled 3-state outp | | | | | Operating free-air temperature range, TA: | SN54ALS874B | |
-55°C to 125°C | | | SN74ALS874B, S | SN74ALS876A |
0°C to 70°C | | Storage temperature range | | |
-65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. SDAS061C - APRIL 1982 - REVISED JANUARY 1995 #### recommended operating conditions | | | | SN | 54ALS87 | '4B | SN74ALS874B
SN74ALS876A | | UNIT | | |-----------------|--------------------------------|---------------------|-----|---------|-----|----------------------------|-----|------|-----| | | | | MIN | NOM | MAX | MIN | NOM | MAX | | | VCC | Supply voltage | | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | | 2 | | | 2 | | | V | | V_{IL} | Low-level input voltage | | | | 0.7 | | | 8.0 | V | | lOH | High-level output current | | | | -1 | | | -2.6 | mA | | lOL | Low-level output current | | | | 12 | | | 24 | mA | | fclock | Clock frequency | | 0 | | 25 | 0 | | 30 | MHz | | | | PRE or CLR low | 15 | | | 10 | | | | | t _w | Pulse duration | CLK high | 20 | | | 16.5 | | | ns | | | | CLK low | 20 | | | 16.5 | | | | | | | Data | 15 | | | 15 | | | | | t _{su} | Setup time before CLK↑ | PRE or CLR inactive | 15 | | | 10 | | | ns | | t _h | Hold time, data after CLK↑ | | 4 | | | 0 | | | ns | | T _A | Operating free-air temperature | | -55 | | 125 | 0 | | 70 | °C | # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | R TEST CONDITIONS | | SN5 | 4ALS87 | '4B | | 4ALS87
4ALS87 | | UNIT | |-----------------|-------------|---|----------------------------|--------------------|------------------|------|--------------------|------------------|------|------| | | | | | MIN | TYP [†] | MAX | MIN | TYP [†] | MAX | | | VIK | | $V_{CC} = 4.5 \text{ V},$ | I _I = –18 mA | | | -1.2 | | | -1.2 | V | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | $I_{OH} = -0.4 \text{ mA}$ | V _{CC} -2 | | | V _{CC} -2 | ! | | | | Vон | | V _{CC} = 4.5 V | I _{OH} = -1 mA | 2.4 | 3.3 | | | | | V | | | | | $I_{OH} = -2.6 \text{ mA}$ | | | | 2.4 | 3.2 | | | | V | Vac = 45 V | | I _{OL} = 12 mA | | 0.25 | 0.4 | | 0.25 | 0.4 | V | | V _{OL} | | V _{CC} = 4.5 V | I _{OL} = 24 mA | | | | | 0.35 | 0.5 | V | | lozh | | V _{CC} = 5.5 V, | V _O = 2.7 V | | | 20 | | | 20 | μΑ | | lozL | | V _{CC} = 5.5 V, | V _O = 0.4 V | | | -20 | | | -20 | μΑ | | lį | | V _{CC} = 5.5 V, | V _I = 7 V | | | 0.1 | | | 0.1 | mA | | I _{IH} | | $V_{CC} = 5.5 \text{ V},$ | V _I = 2.7 V | | | 20 | | | 20 | μΑ | | I _{IL} | | $V_{CC} = 5.5 \text{ V},$ | V _I = 0.4 V | | | -0.2 | | | -0.2 | mA | | lo [‡] | | V _{CC} = 5.5 V, | V _O = 2.25 V | -20 | | -112 | -30 | | -112 | mA | | | | | Outputs high | | 14 | 21 | | 14 | 21 | | | | 'ALS874B | V _{CC} = 5.5 V | Outputs low | | 19 | 30 | | 19 | 30 | | | ICC | | | Outputs disabled | | 20 | 32 | | 20 | 32 | mA | | | | | Outputs high | | | | | 14 | 21 | | | | SN74ALS876A | V _{CC} = 5.5 V | Outputs low | | | | | 18 | 29 | | | | | | Outputs disabled | | | | | 20 | 31 | | $[\]overline{\dagger}$ All typical values are at V_{CC} = 5 V, T_A = 25°C. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS. SDAS061C - APRIL 1982 - REVISED JANUARY 1995 ### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | C _L :
R1 :
R2 : | c = 4.5 V
= 50 pF,
= 500 Ω ,
= 500 Ω ,
= MIN to | to 5.5 V, | | UNIT | |------------------|-----------------|----------------|----------------------------------|--|-----------|-------|------| | | | | SN54AL | S874B | SN74AL | S874B | | | | | | MIN | MAX | MIN | MAX | | | fmax | | | 25 | | 30 | | MHz | | t _{PLH} | OLIV. | A O | 4 | 18 | 4 | 14 | | | ^t PHL | CLK | Any Q | 4 | 16 | 4 | 14 | ns | | t _{PHL} | CLR | Any Q | 5 | 23 | 5 | 17 | ns | | ^t PZH | ŌĒ | A O | 4 | 24 | 4 | 18 | | | t _{PZL} | OE | Any Q | 4 | 21 | 4 | 18 | ns | | ^t PHZ | ŌĒ | Any Q | 2 | 15 | 2 | 10 | ns | | t _{PLZ} | OE . | Ally Q | 3 | 22 | 3 | 12 | 115 | For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V,}$ $C_L = 50 \text{ pF,}$ $R1 = 500 \Omega,$ $R2 = 500 \Omega,$ $T_A = \text{MIN to MAX}^{\dagger}$ SN74ALS876A | | UNIT | |------------------|-----------------|----------------|---|-----|------| | | | | MIN | MAX | | | fmax | | | 30 | | MHz | | ^t PLH | CLIV | A - | 4 | 14 | ns | | ^t PHL | CLK | Any Q | 4 | 14 | | | ^t PHL | PRE | Any Q | 6 | 19 | ns | | ^t PZH | | . = | 4 | 18 | | | t _{PZL} | ŌĒ | Any Q | 4 | 18 | ns | | ^t PHZ | ŌĒ | Any Q | 2 | 10 | nc | | ^t PLZ |)E | Ally Q | 3 | 13 | ns | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. #### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ | Supply voltage, V _{CC} | . 7 V | |--|-------| | Input voltage, V _I | . 7 V | | Operating free-air temperature range, T _A : SN74AS874, SN74AS876 0°C to | 70°C | | Storage temperature range –65°C to 1 | 50°C | [‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. SDAS061C - APRIL 1982 - REVISED JANUARY 1995 #### recommended operating conditions | | | | SI | N74AS87 | ' 4 | SN74AS876 | | LIAUT | | |--------------------|--------------------------------|---------------------|-----|---------|------------|-----------|-----|-------|------| | | | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Vcc | Supply voltage | | 4.5 | 5 | 5.5 | 4.5 | 5 | 5.5 | V | | VIH | High-level input voltage | | 2 | | | 2 | | | V | | VIL | Low-level input voltage | | | | 0.8 | | | 0.8 | V | | loh | High-level output current | | | | -15 | | | -15 | mA | | l _{OL} | Low-level output current | | | | 48 | | | 48 | mA | | f _{clock} | Clock frequency | | 0 | | 125 | 0 | | 80 | MHz | | | | PRE or CLR low | 2 | | | 4.5 | | | ns | | t _w | Pulse duration | CLK high | 3 | | | 6.2 | | | | | | | CLK low | 4 | | | 6.2 | | | | | | | Data | 2 | | | 4.5 | | | | | t _{su} | Setup time before CLK↑ | PRE or CLR inactive | 4 | | | 5 | | | ns | | t _h | Hold time, data after CLK↑ | | 1 | | | 2 | | | ns | | TA | Operating free-air temperature | · | 0 | | 70 | 0 | | 70 | °C | # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CON | DITIONS | | 74AS87
74AS87 | | UNIT | |-----------------|---------------|---|--------------------------|--------------------|------------------|------|------| | | | | | MIN | TYP [†] | MAX | | | VIK | | $V_{CC} = 4.5 \text{ V},$ | $I_{I} = -18 \text{ mA}$ | | | -1.2 | V | | ., | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$ | I _{OH} = −2 mA | V _{CC} -2 | | | | | VOH | | V _{CC} = 4.5 V, | I _{OH} = -15 mA | 2.4 | 3.3 | | V | | VOL | | V _{CC} = 4.5 V, | I _{OL} = 48 mA | | 0.35 | 0.5 | V | | lozh | | V _{CC} = 5.5 V, | V _O = 2.7 V | | | 50 | μΑ | | lozL | | V _{CC} = 5.5 V, | V _O = 0.4 V | | | -50 | μΑ | | Ц | | V _{CC} = 5.5 V, | V _I = 7 V | | | 0.1 | mA | | lін | | V _{CC} = 5.5 V, | V _I = 2.7 V | | | 20 | μΑ | | | D | | | | | -2 | | | ΊL | All others | $V_{CC} = 5.5 V,$ | V _I = 0.4 V | | | -0.5 | mA | | 10 [‡] | | V _{CC} = 5.5 V, | V _O = 2.25 V | -30 | | -112 | mA | | | | | Outputs high | | 82 | 133 | | | | SN74AS874 | $V_{CC} = 5.5 V$ | Outputs low | | 92 | 149 | | | | | | Outputs disabled | | 100 | 160 | A | | ICC | SN74AS876 VC(| | Outputs high | | 88 | 142 | mA | | | | $V_{CC} = 5.5 V$ | Outputs low | | 94 | 150 | | | | | | Outputs disabled | | 100 | 160 | | [†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, los. SDAS061C - APRIL 1982 - REVISED JANUARY 1995 #### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | V _{CC} = 4.5
C _L = 50 pF
R1 = 500 Ω
R2 = 500 Ω
T _A = MIN t | ;
o,
o Max† | UNIT | |------------------|-----------------|----------------|---|-------------------|------| | | | | MIN | MAX | | | fmax | | | 125 | | MHz | | tPLH | CL I/ | A-111. C | 3 | 8.5 | | | ^t PHL | CLK | Any Q | 4 | 10.5 | ns | | ^t PHL | CLR | Any Q | 4 | 9.5 | ns | | ^t PZH | | A O | 2 | 7 | ns | | tPZL | ŌĒ | Any Q | 3 | 10.5 | | | ^t PHZ | ŌĒ | Any Q | 2 | 6 | ne | | ^t PLZ | OE . | Ally Q | 2 | 7.5 | ns | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ### switching characteristics (see Figure 1) | PARAMETER | FROM
(INPUT) | TO
(OUTPUT) | C _L = 50 pF
R1 = 500 Ω
R2 = 500 Ω
T _A = MIN t | V_{CC} = 4.5 V to 5.5 V,
C_L = 50 pF,
R_1 = 500 Ω,
R_2 = 500 Ω,
T_A = MIN to MAX†
SN74AS876 | | | |------------------|-----------------|----------------|--|--|-----|--| | | | | MIN | MAX | | | | f _{max} | | | 80 | | MHz | | | ^t PLH | CL I/ | A G | 3 | 8.5 | ns | | | ^t PHL | CLK | Any Q | 4 | 10.5 | | | | [†] PHL | PRE | Any Q | 4 | 9.5 | ns | | | ^t PZH | | . = | 2 | 7 | | | | t _{PZL} | ŌĒ | Any Q | 3 | 11 | ns | | | ^t PHZ | ŌĒ | Any Q | 2 | 7 | 200 | | | ^t PLZ | OE . | Any Q | 2 | 7 | ns | | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. SDAS061C - APRIL 1982 - REVISED JANUARY 1995 #### PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES - NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. When measuring propagation delay items of 3-state outputs, switch S1 is open. - All input pulses have the following characteristics: PRR \leq 1 MHz, $t_r = t_f = 2$ ns, duty cycle = 50%. - The outputs are measured one at a time with one transition per measurement. Figure 1. Load Circuits and Voltage Waveforms www.ti.com 14-Oct-2022 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan (2) | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|---------------------|-------------------------------|--------------------|--------------|-----------------------------|---------| | 8401001LA | ACTIVE | CDIP | JT | 24 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | 8401001LA
SNJ54ALS874BJT | Samples | | SN54ALS874BJT | ACTIVE | CDIP | JT | 24 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | SN54ALS874BJT | Samples | | SN74ALS874BDW | ACTIVE | SOIC | DW | 24 | 25 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | ALS874B | Samples | | SN74ALS874BDWR | ACTIVE | SOIC | DW | 24 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | ALS874B | Samples | | SN74AS874DW | ACTIVE | SOIC | DW | 24 | 25 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | AS874 | Samples | | SNJ54ALS874BJT | ACTIVE | CDIP | JT | 24 | 1 | Non-RoHS
& Green | SNPB | N / A for Pkg Type | -55 to 125 | 8401001LA
SNJ54ALS874BJT | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. ## **PACKAGE OPTION ADDENDUM** www.ti.com 14-Oct-2022 (6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN54ALS874B, SN74ALS874B: Catalog: SN74ALS874B Military: SN54ALS874B NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Jan-2022 #### TAPE AND REEL INFORMATION | | | Dimension designed to accommodate the component width | |---|----|---| | E | 30 | Dimension designed to accommodate the component length | | K | (0 | Dimension designed to accommodate the component thickness | | | N | Overall width of the carrier tape | | F | 21 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74ALS874BDWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 | www.ti.com 5-Jan-2022 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |----------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | SN74ALS874BDWR | SOIC | DW | 24 | 2000 | 350.0 | 350.0 | 43.0 | | ## PACKAGE MATERIALS INFORMATION www.ti.com 5-Jan-2022 #### **TUBE** #### *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |---------------|--------------|--------------|------|-----|--------|--------|--------|--------| | SN74ALS874BDW | DW | SOIC | 24 | 25 | 506.98 | 12.7 | 4826 | 6.6 | | SN74AS874DW | DW | SOIC | 24 | 25 | 506.98 | 12.7 | 4826 | 6.6 | #### JT (R-GDIP-T**) #### 24 LEADS SHOWN #### **CERAMIC DUAL-IN-LINE** NOTES: A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package can be hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification. - E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB DW (R-PDSO-G24) ## PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AD. #### **IMPORTANT NOTICE AND DISCLAIMER** TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated