July 1988 Revised August 2000 ## 100351 ## Low Power Hex D-Type Flip-Flop #### **General Description** The 100351 contains six D-type edge-triggered, master/slave flip-flops with true and complement outputs, a pair of common Clock inputs (CP $_a$ and CP $_b$) and common Master Reset (MR) input. Data enters a master when both CP $_a$ and CP $_b$ are LOW and transfers to the slave when CP $_a$ and CP $_b$ (or both) go HIGH. The MR input overrides all other inputs and makes the Q outputs LOW. All inputs have 50 k Ω pull-down resistors. #### **Features** - 40% power reduction of the 100151 - 2000V ESD protection - Pin/function compatible with 100151 - Voltage compensated operating range: -4.2V to -5.7V - Available to industrial grade temperature range #### **Ordering Code:** | Order Number | Package Number | Package Description | |--------------|----------------|--| | 100351SC | M24B | 24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide | | 100351PC | N24E | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.400 Wide | | 100351QC | V28A | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square | | 100351QI | | 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (-40°C to +85°C) | Devises also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. ## **Logic Symbol** ## **Connection Diagrams** ## **Pin Descriptions** | Pin Names | Description | |---|---------------------------------| | D ₀ –D ₅ | Data Inputs | | D ₀ –D ₅
CP _a , CP _b | Common Clock Inputs | | MR | Asynchronous Master Reset Input | | Q ₀ -Q ₅ | Data Outputs | | $\overline{Q}_0 - \overline{Q}_5$ | Complementary Data Outputs | #### 28-Pin PLCC ## **Truth Tables** (Each Flip-flop) **Synchronous Operation** | | Inp | uts | | Outputs | |----------------|-----|-----------------|----|----------------------| | D _n | CPa | CP _b | MR | Q _n (t+1) | | L | | L | L | L | | Н | ~ | L | L | Н | | L | L | ~ | L | L | | Н | L | ~ | L | Н | | Х | Н | ~ | L | Q _n (t) | | Х | ~ | Н | L | Q _n (t) | | Х | L | L | L | Q _n (t) | #### **Asynchronous Operation** | | Inputs | | | | | | | | |----------------|--------|-----------------|----|----------------------|--|--|--|--| | D _n | CPa | CP _b | MR | Q _n (t+1) | | | | | | Х | X | Х | Н | L | | | | | - H = HIGH Voltage Level - L = LOW Voltage Level - X = Don't Care - $t = \mbox{Time before CP positive transition}$ - t+1 = Time after CP positive transition - ∠ = LOW-to-HIGH transition ## **Logic Diagram** #### **Absolute Maximum Ratings**(Note 1) ## Recommended Operating Conditions Case Temperature (T_C) $\begin{array}{lll} \mbox{Commercial} & 0 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Industrial} & -40 \mbox{°C to } +85 \mbox{°C} \\ \mbox{Supply Voltage (V_{EE})} & -5.7 \mbox{V to } -4.2 \mbox{V} \end{array}$ Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation. Note 2: ESD testing conforms to MIL-STD-883, Method 3015. #### **Commercial Version** #### **DC Electrical Characteristics** (Note 3) $V_{EE} = -4.2 V$ to -5.7 V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0 ^{\circ} C$ to $+85 ^{\circ} C$ | Symbol | Parameter | Min | Тур | Max | Units | Conditions | | | |------------------|-----------------------------------|-------|-------|-------|-------|--|------------------------------|--| | V _{OH} | Output HIGH Voltage | -1025 | -955 | -870 | mV | V _{IN} =V _{IH} (Max) | Loading with | | | V _{OL} | Output LOW Voltage | -1830 | -1705 | -1620 | IIIV | or V _{IL} (Min) | 50Ω to -2.0V | | | V _{OHC} | Output HIGH Voltage | -1035 | | | mV | $V_{IN} = V_{IH}$ (Min) | Loading with | | | V _{OLC} | Output LOW Voltage | | | -1610 | IIIV | or V _{IL} (Max) | 50Ω to -2.0V | | | V _{IH} | Input HIGH Voltage | -1165 | | -870 | mV | Guaranteed HIGH Signal for All Inputs | | | | V _{IL} | Input LOW Voltage | -1830 | | -1475 | mV | Guaranteed LOW Signal for All Inputs | | | | I _{IL} | Input LOW Current | 0.50 | | | μΑ | $V_{IN} = V_{IL} (Min)$ | | | | I _{IH} | Input HIGH Current | | | | | | | | | | MR | | | 350 | | | | | | | D ₀ –D ₅ | | | 240 | μΑ | $V_{IN} = V_{IH}$ (Max) | | | | | CP _a , CP _b | | | 350 | | | | | | I _{EE} | Power Supply Current | -129 | | -62 | mA | Inputs OPEN | | | Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions. #### **DIP AC Electrical Characteristics** $\rm V_{EE} = -4.2V$ to $-5.7V,~V_{CC} = V_{CCA} = GND$ | Symbol | Parameter | T _C = | $T_C = 0^{\circ}C$ | | T _C = +25°C | | $T_C = +85^{\circ}C$ | | Conditions | |---------------------|---|------------------|--------------------|------|------------------------|------|----------------------|-------|--------------| | Symbol | | Min | Max | Min | Max | Min | Max | Units | Conditions | | f _{MAX} | Toggle Frequency | 375 | | 375 | | 375 | | MHz | Figures 2, 3 | | t _{PLH} | Propagation Delay | 0.80 | 2.00 | 0.80 | 2.0 | 0.90 | 2.10 | ns | Figures 1, 3 | | t _{PHL} | CP _a , CP _b to Output | 0.00 | 2.00 | 0.00 | 2.0 | 0.90 | 2.10 | 115 | rigules 1, 3 | | t _{PLH} | Propagation Delay | 1.10 | 2.30 | 1.10 | 2.30 | 1.20 | 2.40 | ns | Figures 1, 4 | | t _{PHL} | MR to Output | 1.10 | 2.30 | 1.10 | 2.30 | 1.20 | 2.40 | 115 | Figures 1, 4 | | t _{TLH} | Transition Time | 0.35 | 1.20 | 0.35 | 1.20 | 0.35 | 1,20 | ns | Figures 1, 3 | | t _{THL} | 20% to 80%, 80% to 20% | 0.33 | 1.20 | 0.33 | 1.20 | 0.33 | 1.20 | 115 | rigules 1, 3 | | t _S | Setup Time | | | | | | | | | | | D ₀ -D ₅ | 0.40 | | 0.40 | | 0.40 | | ns | Figure 5 | | | MR (Release Time) | 1.60 | | 1.60 | | 1.60 | | | Figure 4 | | t _H | Hold Time | 0.80 | | 0.80 | | 0.80 | | ns | Figure 5 | | | D ₀ -D ₅ | 0.60 | | 0.60 | | 0.60 | | 115 | rigule 5 | | t _{PW} (H) | Pulse Width HIGH | 2.00 | | 2.00 | | 2.00 | | | Figure 2 4 | | | CP _a , CP _b , MR | 2.00 | | 2.00 | | 2.00 | | ns | Figures 3, 4 | # Commercial Version (Continued) SOIC and PLCC AC Electrical Characteristics $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$ | Symbol | Parameter | T _C = 0°C | | T _C = +25°C | | T _C = +85°C | | Units | Conditions | |---------------------|---|----------------------|------|------------------------|------|------------------------|------|--------|--------------| | Symbol | | Min | Max | Min | Max | Min | Max | Oilles | Conditions | | f _{MAX} | Toggle Frequency | 375 | | 375 | | 375 | | MHz | Figures 2, 3 | | t _{PLH} | Propagation Delay | 0.80 | 1.80 | 0.80 | 1.80 | 0.90 | 1.90 | no | Figures 1, 3 | | t_{PHL} | CP _a , CP _b to Output | 0.60 | 1.00 | 0.60 | 1.00 | 0.90 | 1.90 | ns | rigules 1, 3 | | t _{PLH} | Propagation Delay | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | ns | Figures 1, 4 | | t_{PHL} | MR to Output | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | 115 | rigules 1, 4 | | t _{TLH} | Transition Time | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.70 | ns | Figures 1, 3 | | t_{THL} | 20% to 80%, 80% to 20% | 0.43 | 1.70 | 0.43 | 1.00 | 0.43 | 1.70 | 113 | rigules 1, 5 | | t _S | Setup Time | | | | | | | | | | | D ₀ -D ₅ | 0.30 | | 0.30 | | 0.30 | | ns | Figure 5 | | | MR (Release Time) | 1.50 | | 1.50 | | 1.50 | | | Figure 4 | | t _H | Hold Time | 0.80 | | 0.80 | | 0.80 | | ns | Figure 5 | | | D ₀ -D ₅ | 0.00 | | 0.00 | | 0.00 | | 113 | rigure 5 | | t _{PW} (H) | Pulse Width HIGH | 2.00 | | 2.00 | | 2.00 | | ns | Figures 3, 4 | | | CP _a , CP _b , MR | 2.00 | | 2.00 | | 2.00 | | 110 | riguico o, 4 | | toshl | Maximum Skew Common Edge | | | | | | | | PLCC only | | | Output-to-Output Variation | | 220 | | 220 | | 220 | ps | (Note 4) | | | Clock to Output Path | | | | | | | | | | toslh | Maximum Skew Common Edge | | | | | | | | PLCC only | | | Output-to-Output Variation | | 210 | | 210 | | 210 | ps | (Note 4) | | | Clock to Output Path | | | | | | | | | | tost | Maximum Skew Opposite Edge | | | | | | | | PLCC only | | | Output-to-Output Variation | | 240 | | 240 | | 240 | ps | (Note 4) | | | Clock to Output Path | | | | | | | | | | t _{PS} | Maximum Skew | | | | | | | | PLCC only | | | Pin (Signal) Transition Variation | | 230 | | 230 | | 230 | ps | (Note 4) | | | Clock to Output Path | | | | | | | | | Note 4: Output-to-Output Skew is defined as the absolute value of the difference between the actual propagation delay for any outputs within the same packaged device. The specifications apply to any outputs switching in the same direction either HIGH-to-LOW (t_{OSHL}), or LOW-to-HIGH (t_{OSLH}), or in opposite directions both HL and LH (t_{OST}). Parameters t_{OST} and t_{PS} guaranteed by design. #### **Industrial Version** ## **PLCC DC Electrical Characteristics** V_{EE} =-4.2V to -5.7V, V_{CC} = V_{CCA} = GND, T_{C} = 0°C to +85°C (Note 5) | Symbol | Parameter | T _C = | T _C = -40°C | | to +85°C | Units | Conditions | | | |------------------|-----------------------------------|------------------|------------------------|-------|----------|--------|--|--|--| | | i didilicioi | Min | Max | Min | Max | 011110 | Conditions | | | | V _{OH} | Output HIGH Voltage | -1085 | -870 | -1025 | -870 | mV | V _{IN} =V _{IH} (Max) Loading wit | | | | V _{OL} | Output LOW Voltage | -1830 | -1575 | -1830 | -1620 | mv | or V _{IL} (Min) 50Ω to -2.0 | | | | V _{OHC} | Output HIGH Voltage | -1095 | | -1035 | | mV | V _{IN} = V _{IH} (Min) Loading with | | | | V _{OLC} | Output LOW Voltage | | -1565 | | -1610 | IIIV | or V _{IL} (Max) 50Ω to -2.0 | | | | V _{IH} | Input HIGH Voltage | -1170 | -870 | -1165 | -870 | mV | Guaranteed HIGH Signal for All Inputs | | | | | | | | | | | | | | | V _{IL} | Input LOW Voltage | -1830 | -1480 | -1830 | -1475 | mV | Guaranteed LOW Signal | | | | | | | | | | | for All Inputs | | | | I _{IL} | Input LOW Current | 0.50 | | 0.50 | | μΑ | V _{IN} = V _{IL} (Min) | | | | I _{IH} | Input HIGH Current | | | | | | | | | | | MR | | 350 | | 350 | | | | | | | D ₀ –D ₅ | | 240 | | 240 | μΑ | V _{IN} = V _{IH} (Max) | | | | | CP _a , CP _b | | 350 | | 350 | | | | | | I _{EE} | Power Supply Current | -129 | -62 | -129 | -62 | mA | Inputs OPEN | | | Note 5: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions. #### **PLCC AC Electrical Characteristics** $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$ | Symbol | Parameter | T _C = | $T_C = -40^{\circ}C$ | | T _C = +25°C | | $T_C = +85^{\circ}C$ | | Conditions | |---------------------|---|------------------|----------------------|------|------------------------|------|----------------------|-------|--------------| | Symbol | | Min | Max | Min | Max | Min | Max | Units | Conditions | | f _{MAX} | Toggle Frequency | 375 | | 375 | | 375 | | MHz | Figures 2, 3 | | t _{PLH} | Propagation Delay | 0.80 | 1.80 | 0.80 | 1.80 | 0.90 | 1.90 | | Figures 1, 3 | | t _{PHL} | CP _a , CP _b to Output | 0.80 | 1.80 | 0.80 | 1.80 | 0.90 | 1.90 | ns | rigures 1, 3 | | t _{PLH} | Propagation Delay | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | ns | Figures 1, 4 | | t _{PHL} | MR to Output | 1.10 | 2.10 | 1.10 | 2.10 | 1.20 | 2.20 | 115 | rigules 1, 4 | | t _{TLH} | Transition Time | 0.45 | 1.70 | 0.45 | 1.60 | 0.45 | 1.70 | ns | Figures 1, 3 | | t _{THL} | 20% to 80%, 80% to 20% | 0.45 | 1.70 | 0.43 | 1.00 | 0.43 | 1.70 | 115 | rigules 1, 3 | | t _S | Setup Time | | | | | | | | | | | D ₀ -D ₅ | 0.60 | | 0.30 | | 0.30 | | ns | Figure 5 | | | MR (Release Time) | 2.20 | | 1.50 | | 1.50 | | | Figure 4 | | t _H | Hold Time | 0.00 | | 0.00 | | 0.00 | | | Figure 5 | | | D ₀ -D ₅ | 0.60 | | 0.90 | | 0.90 | | ns | Figure 5 | | t _{PW} (H) | Pulse Width HIGH | 2.00 | | 2.00 | | 2.00 | | | Figures 3, 4 | | | CP _a , CP _b , MR | 2.00 | | 2.00 | | 2.00 | | ns | rigures 3, 4 | ## **Test Circuitry** #### Notes: $\mathrm{V_{CC},\,V_{CCA}=+2V,\,V_{EE}=-2.5V}$ L1 and L2 = equal length 50Ω impedance lines $R_{T}=50\Omega$ terminator internal to scope Decoupling 0.1 μF from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND C_L = Fixture and stray capacitance \leq 3 pF FIGURE 1. AC Test Circuit #### Notes: $V_{CC},\,V_{CCA}=+2V,\,V_{EE}=-2.5V$ L1 and L2 = equal length 50Ω impedance lines $R_T = 50\Omega$ terminator internal to scope Decoupling 0.1 μF from GND to V_{CC} and V_{EE} All unused outputs are loaded with 50Ω to GND $C_L = \text{Jig}$ and stray capacitance $\leq 3 \text{ pF}$ FIGURE 2. Toggle Frequency Test Circuit ## **Switching Waveforms** FIGURE 3. Propagation Delay (Clock) and Transition Times FIGURE 4. Propagation Delay (Reset) #### Notes: $t_{\hat{S}}$ is the minimum time before the transition of the clock that information must be present at the data input. $t_{\mbox{\scriptsize H}}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input. FIGURE 5. Setup and Hold Time #### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com