

Reference Specification

Leaded MLCC for General Purpose RDE Series

Product specifications in this catalog are as of Jun. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

1. Application

This product specification is applied to Leaded MLCC RDE series used for General Electronic equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

2. Rating

• Part Number Configuration

ex.)	RDE	R7	2E	102	K	1	K1	H03	В
	Series	Temperature	Rated	Capacitance	Capacitance	Dimension	Lead	Individual	Package
		Characteristics	Voltage		Tolerance	(LxW)	Style	Specification	

• Temperature Characteristics

Code	Temp. Char.	Temp. Range	Cap. Change	Standard Temp.	Operating Temp. Range	
R7	X7R (EIA code)	-55 ∼ 125°C	+/-15%	25°C	-55 ∼ 125°C	

Rated Voltage

Code	Rated voltage
2E	DC250V
2H	DC500V
2J	DC630V
3A	DC1000V

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF.

$$10 \times 10^2 = 1000 pF$$

• Capacitance Tolerance

Code	Capacitance Tolerance						
K	+/-10%						
M	+/-20%						

• Dimension (LxW)

Please refer to [Part number list].

• Lead Style

*Lead wire is "solder coated CP wire".

Code	Lead Style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

• Individual Specification

Murata's control code.

Please refer to [Part number list].

• Package

Code	Package
Α	Taping type of Ammo
В	Bulk type

3. Marking

Temp. char. : Letter code : C (X7R Char. Except dimension code : 1)

Capacitance : 3 digit numbers

Capacitance tolerance : Code

Rated voltage : Letter code : 4 (DC250V. Except dimension code : 1)

Letter code: 9 (DC500V. Except dimension code: 1)

Letter code : 7 (DC630V) Letter code : A (DC1000V)

Company name code : Abbreviation : (Except dimension code : 1)

(Ex.)

(EX.)				
Rated voltage Dimension code	DC250V	DC500V	DC630V	DC1000V
1	103K	103K	-	_
2	€ 473 K4C	6 153 K9C	6 153 K7C	€ 152 KAC
3,4	@ 154 K4C	(104 K9C	(M 104 K7C	G 473 KAC
5,U	684 K4C	474 K9C	6 474 M7C	См 224 МАС

4. Part number list

 Inside Crimp (Lead Style:K*)

•Straight Long (Lead Style:B1)

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dime	ension ((mm)		Dimension (LxW)	
Part Number		1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
	RDER72E102K1K1H03B	X7R	250	1000pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E152K1K1H03B	X7R	250	1500pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E222K1K1H03B	X7R	250	2200pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E332K1K1H03B	X7R	250	3300pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E472K1K1H03B	X7R	250	4700pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E682K1K1H03B	X7R	250	6800pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E103K1K1H03B	X7R	250	10000pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E153K1K1H03B	X7R	250	15000pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E223K1K1H03B	X7R	250	22000pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72E333K2K1H03B	X7R	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72E473K2K1H03B	X7R	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72E683K2K1H03B	X7R	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72E104K2K1H03B	X7R	250	0.1µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72E154K3K1H03B	X7R	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER72E224K3K1H03B	X7R	250	0.22µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER72E334K4K1H03B	X7R	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDER72E474K4K1H03B	X7R	250	0.47µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDER72E684K5B1H03B	X7R	250	0.68µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDER72E105K5B1H03B	X7R	250	1.0µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500

 Straight Long (Dimension(Lx\) Lead Style:UB1)

 Inside Crimp (Lead Style:K*)

Customer	Murata Part Number	urata Part Number T.C. Rated Cap. Cap. Dimension (mm)							Dimension (LxW)	Pack qty.		
Part Number	Murata Fart Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	
	RDER72E225MUB1H03B	X7R	250	2.2µF	±20%	7.7	12.5	-	5.0	4.5	UB1	200
	RDER72H102K1K1H03B	X7R	500	1000pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H152K1K1H03B	X7R	500	1500pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H222K1K1H03B	X7R	500	2200pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H332K1K1H03B	X7R	500	3300pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H472K1K1H03B	X7R	500	4700pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H682K1K1H03B	X7R	500	6800pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H103K1K1H03B	X7R	500	10000pF	±10%	4.5	3.5	5.0	5.0	3.15	1K1	500
	RDER72H153K2K1H03B	X7R	500	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72H223K2K1H03B	X7R	500	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72H333K2K1H03B	X7R	500	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72H473K2K1H03B	X7R	500	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72H683K3K1H03B	X7R	500	68000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER72H104K3K1H03B	X7R	500	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER72H154K4K1H03B	X7R	500	0.15µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDER72H224K4K1H03B	X7R	500	0.22µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500

- Straight Long (Lead Style: B1)

 Straight Long (Dimension(Lx\) Lead Style:UB1)

Customer	Murata Part Number	ata Part Number T.C. Rated Cap. Cap. Dimension (mm		mm)		Dimension (LxW)	Pack qty.					
Part Number	iviulata Falt Nullibel	1.0.	Volt. (V)	Сар.	Tol. L ±10% 7 ±10% 7	L	W	W1	F	Т	Lead Style	
	RDER72H334K5B1H03B	X7R	500	0.33µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDER72H474K5B1H03B	X7R	500	0.47µF	±10%	7.5	7.5	-	5.0	4.5	5B1	500
	RDER72H684MUB1H03B	X7R	500	0.68µF	±20%	7.7	12.5	-	5.0	4.5	UB1	200
	RDER72H105MUB1H03B	X7R	500	1.0µF	±20%	7.7	12.5	-	5.0	4.5	UB1	200

Customer	Murata Part Number	T.C.	DC Dimension (mm) Rated Cap.							Dimension (LxW)	n Pack qty.	
Part Number	Murata i art Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	
	RDER72J102K2K1H03B	X7R	630	1000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J152K2K1H03B	X7R	630	1500pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J222K2K1H03B	X7R	630	2200pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J332K2K1H03B	X7R	630	3300pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J472K2K1H03B	X7R	630	4700pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J682K2K1H03B	X7R	630	6800pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J103K2K1H03B	X7R	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J153K2K1H03B	X7R	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J223K2K1H03B	X7R	630	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER72J333K3K1H03B	X7R	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER72J473K3K1H03B	X7R	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER72J683K4K1H03B	X7R	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDER72J104K4K1H03B	X7R	630	0.1µF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDER72J154K5B1H03B	X7R	630	0.15µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500
	RDER72J224K5B1H03B	X7R	630	0.22µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500

 Straight Long (Dimension(LxW) Lead Style:UB1)

 Inside Crimp (Lead Style:K*)

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Cap.		Dime		Dimension (LxW)	Pack		
Part Number	Murata Fart Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	Lead Style	qty. (pcs)
	RDER72J474MUB1H03B	X7R	630	0.47µF	±20%	7.7	13.0	-	5.0	4.0	UB1	200
	RDER73A471K2K1H03B	X7R	1000	470pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A681K2K1H03B	X7R	1000	680pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A102K2K1H03B	X7R	1000	1000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A152K2K1H03B	X7R	1000	1500pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A222K2K1H03B	X7R	1000	2200pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A332K2K1H03B	X7R	1000	3300pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A472K2K1H03B	X7R	1000	4700pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A682K2K1H03B	X7R	1000	6800pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A103K2K1H03B	X7R	1000	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	500
	RDER73A153K3K1H03B	X7R	1000	15000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER73A223K3K1H03B	X7R	1000	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	500
	RDER73A333K4K1H03B	X7R	1000	33000pF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500
	RDER73A473K4K1H03B	X7R	1000	47000pF	±10%	7.5	5.5	8.0	5.0	4.0	4K1	500

Straight Long (Dimension(Lx\) Lead Style:UB1)

Customer		Murata Part Number		DC Rated	Cap.	Сар.	Dimension (mm)					Dimension (LxW)	Pack qty.
	Part Number	Warata Fart Namber	T.C.	Volt. (V)	oup.	Tol.	L	W	W1	F	Т	Lead Style	
		RDER73A683K5B1H03B	X7R	1000	68000pF	±10%	7.5	8.0	-	5.0	4.5	5B1	500
		RDER73A104K5B1H03B	X7R	1000	0.1µF	±10%	7.5	8.0	-	5.0	4.5	5B1	500
		RDER73A224MUB1H03B	X7R	1000	0.22µF	±20%	7.7	13.0	-	5.0	4.0	UB1	200

•Straight Taping (Lead Style:E*)

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.	Dimension (mm)				Dimension (LxW)	Pack qty.		
Part Number	iviurata Fart Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	
	RDER72E102K1M1H03A	X7R	250	1000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E152K1M1H03A	X7R	250	1500pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E222K1M1H03A	X7R	250	2200pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E332K1M1H03A	X7R	250	3300pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E472K1M1H03A	X7R	250	4700pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E682K1M1H03A	X7R	250	6800pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E103K1M1H03A	X7R	250	10000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E153K1M1H03A	X7R	250	15000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E223K1M1H03A	X7R	250	22000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72E333K2M1H03A	X7R	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72E473K2M1H03A	X7R	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72E683K2M1H03A	X7R	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72E104K2M1H03A	X7R	250	0.1µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72E154K3M1H03A	X7R	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER72E224K3M1H03A	X7R	250	0.22µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER72E334K4M1H03A	X7R	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER72E474K4M1H03A	X7R	250	0.47µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER72E684K5E1H03A	X7R	250	0.68µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDER72E105K5E1H03A	X7R	250	1.0µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDER72E225MUE1H03A	X7R	250	2.2µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1500

•Straight Taping (Lead Style:E*)

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.	Г		Dimension (mm)					Pack qty.
Part Number	iviurata i art ivumber	2.0	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	H/H0	(LxW) Lead Style	
	RDER72H102K1M1H03A	X7R	500	1000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H152K1M1H03A	X7R	500	1500pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H222K1M1H03A	X7R	500	2200pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H332K1M1H03A	X7R	500	3300pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H472K1M1H03A	X7R	500	4700pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H682K1M1H03A	X7R	500	6800pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H103K1M1H03A	X7R	500	10000pF	±10%	4.5	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RDER72H153K2M1H03A	X7R	500	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72H223K2M1H03A	X7R	500	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72H333K2M1H03A	X7R	500	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72H473K2M1H03A	X7R	500	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72H683K3M1H03A	X7R	500	68000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER72H104K3M1H03A	X7R	500	0.1µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER72H154K4M1H03A	X7R	500	0.15µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER72H224K4M1H03A	X7R	500	0.22µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER72H334K5E1H03A	X7R	500	0.33µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDER72H474K5E1H03A	X7R	500	0.47µF	±10%	7.5	7.5	-	5.0	4.5	17.5	5E1	1500
	RDER72H684MUE1H03A	X7R	500	0.68µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1500
	RDER72H105MUE1H03A	X7R	500	1.0µF	±20%	7.7	12.5	-	5.0	4.5	17.5	UE1	1500

•Straight Taping (Lead Style:E*)

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.	Dimension (mm)				Dimension Pa			
Part Number	Murata Fatt Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	H/H0	Lead Style	qty. (pcs)
	RDER72J102K2M1H03A	X7R	630	1000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J152K2M1H03A	X7R	630	1500pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J222K2M1H03A	X7R	630	2200pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J332K2M1H03A	X7R	630	3300pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J472K2M1H03A	X7R	630	4700pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J682K2M1H03A	X7R	630	6800pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J103K2M1H03A	X7R	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J153K2M1H03A	X7R	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J223K2M1H03A	X7R	630	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER72J333K3M1H03A	X7R	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER72J473K3M1H03A	X7R	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER72J683K4M1H03A	X7R	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER72J104K4M1H03A	X7R	630	0.1µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER72J154K5E1H03A	X7R	630	0.15µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDER72J224K5E1H03A	X7R	630	0.22µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDER72J474MUE1H03A	X7R	630	0.47µF	±20%	7.7	13.0	-	5.0	4.0	17.5	UE1	1500

•Straight Taping (Lead Style:E*)

Customer	Murata Part Number	T.C.	DC Rated	Cap.	Сар.		Dimension (mm)			Dimension (LxW)			
Part Number	Murata Fait Number	1.0.	Volt. (V)	Сар.	Tol.	L	W	W1	F	Т	H/H0	. ` . ~ .' .	qty. (pcs)
	RDER73A471K2M1H03A	X7R	1000	470pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A681K2M1H03A	X7R	1000	680pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A102K2M1H03A	X7R	1000	1000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A152K2M1H03A	X7R	1000	1500pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A222K2M1H03A	X7R	1000	2200pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A332K2M1H03A	X7R	1000	3300pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A472K2M1H03A	X7R	1000	4700pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A682K2M1H03A	X7R	1000	6800pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A103K2M1H03A	X7R	1000	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RDER73A153K3M1H03A	X7R	1000	15000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER73A223K3M1H03A	X7R	1000	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RDER73A333K4M1H03A	X7R	1000	33000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER73A473K4M1H03A	X7R	1000	47000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RDER73A683K5E1H03A	X7R	1000	68000pF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDER73A104K5E1H03A	X7R	1000	0.1µF	±10%	7.5	8.0	-	5.0	4.5	17.5	5E1	1500
	RDER73A224MUE1H03A	X7R	1000	0.22µF	±20%	7.7	13.0	-	5.0	4.0	17.5	UE1	1500

Reference only

5. SPF	ECIFICATIONS	AND TEST ME		ce only							
No.		em	Specification	Test Method							
1	Appearance		No defects or abnormalities.	Visual inspection.							
	Dimension and	d Marking	Within the specified dimensions and Marking.	Visual inspection, Using Caliper.							
3	Dielectric Strength	Between Terminals	No defects or abnormalities.	The capacitor should not be damaged when voltage in Table is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC250V 200% of the rated voltage DC500V, DC630V 150% of the rated voltage DC1kV 120% of the rated voltage							
		Body Insulation	No defects or abnormalities.	The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls as shown in the figure, for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Discharge current ≤ 50mA.) Rated voltage Test voltage DC250V, DC500V 200% of the rated voltage DC630V, DC1kV DC1300V							
4	Insulation Resistance (I.R.)	Between Terminals	10 000MΩ or 100MΩ+μF min. (Whichever is smaller)	The insulation resistance should be measured with DC500V (DC250V in case of rated voltage : DC250V) at normal temperature and humidity and							
5	Capacitance		Within the specified tolerance.	within 2 minutes of charging. (Charge/Discharge current ≦ 50mA.) The capacitance, D.F. should be measured at 25°C							
6	Dissipation Fa (D.F.)	ctor	0.025 max.	at the frequency and voltage shown in the table. Frequency Voltage 1±0.1kHz AC1±0.2V (r.m.s.)							
	Temperature Characteristics	5		temperature stage. Step Temperature(°C) 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2 • Pretreatment Perform a heat treatment at 150+0/-10°C for one hour and then set at *room condition temperature for 24±2 hours.							
8	Terminal Strength	Tensile Strength	Termination not to be broken or loosened. Termination not to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep the force applied for 10±1 seconds. Each lead wire should be subjected to a force of							
		Strength		2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.							
9	Vibration Resistance	Appearance Capacitance D.F.	No defects or abnormalities. Within the specified tolerance. 0.025max.	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of							
	Solderability of		Solder is deposited on unintermittently immersed portion in axial direction covering 3/4 or more in circumferential direction of lead wires.	2 hours in each 3 mutually perpendicular directions (total of 6 hours). The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm from the terminal body. Temp. of solder: 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder							

ESRDE113C

Reference only

lo.	ŀ	tem	Specification Ket				Test Meth	od					
	Resistance	Appearance	No defects or abnormalities.	The le	The lead wires should be immersed in the melted solder 1.5 to 2.0mm								
	to Soldering	Capacitance	Within ±7.5%	from t	he root of t	erminal at 260	±5°C for 10±	1 seconds.					
	Heat	Change											
	(Non-	Dielectric	No defects.		treatment								
	Preheat)	Strength		Capacitor should be stored at 150+0/-10°C for one hour, then place at *room condition for 24±2 hours before initial measurement.									
		(Between				n for 24±2 hou	urs before init	ial measureme	nt.				
		terminals)		 Post-treatment Capacitor should be stored for 24±2 hours at *room condition. 									
			<u></u>										
11-2	Resistance	Appearance	No defects or abnormalities.		•			0/-5°C for 60+0					
	to Soldering	Capacitance	Within ±7.5%					the melted solo					
	Heat	Change		1.5 to	2.0mm fro	m the root of to	erminal at 260	0±5°C for 7.5+0)/-1 seconds.				
	(On-	Dielectric	No defects.										
	Preheat)	Strength			treatment								
		(Between		I -				for one hour, th	-				
		terminals)				n for 24±2 hou	urs before init	ial measureme	nt.				
					-treatment								
		<u> </u>	<u> </u>			be stored for	24±2 hours a	at *room conditi	ion.				
11-3	Resistance	Appearance	No defects or abnormalities.		condition								
	to Soldering	Capacitance	Within ±7.5%		•	iron-tip: 350±							
	Heat	Change	<u> </u>		-	: 3.5±0.5 seco	nds						
	(soldering	Dielectric	No defects.		ring positio								
	iron method)	Strength			-	1.5 to 2.0mm f							
		(Between		Crim	p Lead : 1.	5 to 2.0mm fro	om the end of	lead bend.					
		terminals)											
					treatment								
				Capacitor should be stored at 150+0/-10°C for one hour, then place									
				at *room condition for 24±2 hours before initial measurement. • Post-treatment Capacitor should be stored for 24±2 hours at *room condition.									
		1							ion.				
12	Temperature	Appearance	No defects or abnormalities.		-	according to th	ne 4 heat trea	tments					
	Cycle	Capacitance	Within ±12.5%		in the follow	•							
		Change		Set at	*room con	dition for 24±2	hours, then	measure.					
		D.F.	0.05 max.		Step	1	2	3	4				
			1,000,10 50,10 5		-	Min.		Max.					
		I.R.	1,000MΩ or 50MΩ•μF min.		Temp.	Operating	Room	Operating	Room				
			(Whichever is smaller)		(°C)	Temp. ±3	Temp.	Temp. ±3	Temp.				
		Dielectric	No defects or abnormalities.		Time				_				
		Strength			(min.)	30±3	3 max.	30±3	3 max.				
	ı		i										
		(Between		. .	t '								
		Terminals)			reatment		0.0/4000 1						
		`		Perfor	rm a heat tr	reatment at 15							
10	Humidie.	Terminals)	No defects or observe this c	Perfor hour a	m a heat to	t at *room con	dition for 24±						
13	Humidity (Stoody	Terminals) Appearance	No defects or abnormalities.	Perfor hour a Set th	rm a heat to and then se e capacitor	et at *room con at 40±2°C an	dition for 24± d relative						
13	(Steady	Terminals) Appearance Capacitance	No defects or abnormalities. Within ±12.5%	Perfor hour a Set th humid	rm a heat to and then se e capacitor lity 90 to 95	et at *room con at 40±2°C an 5% for 500+24	dition for 24± d relative /-0 hours.	2 hours.	ogeure				
13	1 1	Terminals) Appearance Capacitance Change	Within ±12.5%	Perfor hour a Set th humid	rm a heat to and then se e capacitor lity 90 to 95	et at *room con at 40±2°C an 5% for 500+24	dition for 24± d relative /-0 hours.		easure.				
13	(Steady	Appearance Capacitance Change D.F.	Within ±12.5% 0.05 max.	Perfor hour a Set th humid Remo	rm a heat to and then se e capacitor lity 90 to 95 ove and set	et at *room con at 40±2°C an 5% for 500+24	dition for 24± d relative /-0 hours.	2 hours.	easure.				
13	(Steady	Terminals) Appearance Capacitance Change	Within ±12.5% 0.05 max. 1,000ΜΩ or 50ΜΩ•μF min.	Perfor hour a Set th humid Remo	rm a heat trand then se e capacitor lity 90 to 95 eve and set reatment	at at *room con at 40±2°C an sign for 500+24, at *room conc	dition for 24± d relative /-0 hours. lition for 24±2	2 hours.	easure.				
13	(Steady	Appearance Capacitance Change D.F.	Within $\pm 12.5\%$ 0.05 max. 1,000MΩ or 50 MΩ· μ F min. (Whichever is smaller)	Perfor hour a Set th humid Remo	rm a heat to and then se e capacitor dity 90 to 95 eve and set reatment rm a heat to	at at *room con r at 40±2°C an 5% for 500+24, at *room conc	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for	2 hours.	easure.				
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Legible.	Perfor hour a Set th humid Remo	rm a heat to and then se e capacitor dity 90 to 95 eve and set reatment rm a heat to and then se	at at *room con r at 40±2°C an s% for 500+24, at *room cond reatment at 15 at at *room con	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24±	2 hours. thours, then me one 2 hours.	easure.				
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Legible. No defects or abnormalities.	Perfor hour a Set th humid Remo Pretr Perfor hour a Apply	m a heat to and then se e capacitor dity 90 to 95 ove and set reatment m a heat to and then se the rated v	at at *room cond r at 40±2°C an r 3% for 500+24, at *room cond reatment at 15 at at *room cond oltage at 40±2	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± °C and relative	2 hours. thours, then me one 2 hours.	easure.				
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance Capacitance	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Legible.	Perfor hour a Set th humid Remo Pretr Perfor hour a Apply humid	rm a heat to and then se e capacitor dity 90 to 95 ove and set reatment rm a heat to and then se the rated v	at at *room cond r at 40±2°C an 5% for 500+24, at *room cond reatment at 15 at at *room cond oltage at 40±2 95% for 500+	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± c°C and relative 24/-0 hours.	2 hours. thours, then many one 2 hours. ve					
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance Capacitance Change	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ•μF min. (Whichever is smaller) Legible. No defects or abnormalities. Within ±12.5%	Perfor hour a Set th humid Remo Pretriperfor hour a Apply humid Remo	m a heat to and then se e capacitor lity 90 to 95 eve and set reatment m a heat to and then se the rated v lity of 90 to eve and set	at 40±2°C an fow for 500+24, at *room condereatment at 15 at at *room condereatment at 40±2 95% for 500+2 at *room condereatment at 40±2 95% for 500+2 at *room condereatment at 40±2	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± 1°C and relative 24/-0 hours. lition for 24±2	2 hours. thours, then me one 2 hours.					
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance Capacitance Change D.F.	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ•μF min. (Whichever is smaller) Legible. No defects or abnormalities. Within ±12.5% 0.05 max.	Perfor hour a Set th humid Remo Pretriperfor hour a Apply humid Remo	m a heat to and then se e capacitor lity 90 to 95 eve and set reatment m a heat to and then se the rated v lity of 90 to eve and set	at at *room cond r at 40±2°C an 5% for 500+24, at *room cond reatment at 15 at at *room cond oltage at 40±2 95% for 500+	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± 1°C and relative 24/-0 hours. lition for 24±2	2 hours. thours, then many one 2 hours. ve					
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance Capacitance Change	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Legible. No defects or abnormalities. Within ±12.5% 0.05 max. 500MΩ or 25MΩ·μF min.	Perfor hour a Set th humid Remo	rm a heat to and then se e capacitor lity 90 to 95 eve and set reatment rm a heat to and then se the rated v lity of 90 to eve and set ge/Dischar	at 40±2°C an fow for 500+24, at *room condereatment at 15 at at *room condereatment at 40±2 95% for 500+2 at *room condereatment at 40±2 95% for 500+2 at *room condereatment at 40±2	dition for 24± d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± 1°C and relative 24/-0 hours. lition for 24±2	2 hours. thours, then many one 2 hours. ve					
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance Capacitance Change D.F.	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ•μF min. (Whichever is smaller) Legible. No defects or abnormalities. Within ±12.5% 0.05 max.	Perfor hour a Set th humid Remo Perfor hour a Apply humid Remo (Char.	rm a heat to and then see a capacitor lity 90 to 95 to earn and set the rated with the rated vote and set ge/Dischargereatment.	tat *room con at 40±2°C an sis for 500+24, at *room conc reatment at 15 at at *room con oltage at 40±2 95% for 500+3 at *room conc ge current ≤ 5	dition for 24±2 d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± c°C and relative 24/-0 hours. lition for 24±2 50mA.)	2 hours. thours, then many one 2 hours. ve					
	(Steady State)	Appearance Capacitance Change D.F. I.R. Marking Appearance Capacitance Change D.F.	Within ±12.5% 0.05 max. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Legible. No defects or abnormalities. Within ±12.5% 0.05 max. 500MΩ or 25MΩ·μF min.	Perfor hour a Set th humid Remo Perfor hour a Apply humid Remo (Char.	rm a heat to and then see a capacitor lity 90 to 95 to earn and set the rated with the rated vote and set ge/Dischargereatment.	at 40±2°C an fow for 500+24, at *room condereatment at 15 at at *room condereatment at 40±2 95% for 500+2 at *room condereatment at 40±2 95% for 500+2 at *room condereatment at 40±2	dition for 24±2 d relative /-0 hours. lition for 24±2 0+0/-10°C for dition for 24± c°C and relative 24/-0 hours. lition for 24±2 50mA.)	2 hours. thours, then many one 2 hours. ve					

No. International Composition No. International Composition No. International Composition No. International Composition No. International Compositional Compositiona				Reference	ce only		
Temperature Load Capacitance Change Change D.F. 0.04 max. (Charge/Discharge current ≤ 50mA.)				Specification			
Load Change Remove and set at *room condition for 24±2 hours, then measure.	15				=		
D.F. 0.04 max. I.R. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Pretreatment Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. Appearance Marking D.F. 0.04 max. (Charge/Discharge current ≤ 50mA.) Rated voltage DC250V 150% of the rated voltage DC500V, DC630V 120% of the rated voltage DC1kV 110% of the rated voltage DC1kV 110% of the rated voltage Pretreatment Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent : Isopropyl alcohol			1 · ·	Within ±12.5%			
I.R. 1,000MΩ or 50MΩ·μF min. (Whichever is smaller) Rated voltage DC250V 150% of the rated voltage DC500V, DC630V 120% of the rated voltage DC1kV 110% of t		Load					
(Whichever is smaller) (Pretreatment Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent: Isopropyl alcohol					(Charge/Dis	charge current ≤ 50n	nA.)
DC250V 150% of the rated voltage DC500V, DC630V 120% of the rated voltage DC1kV 110% of the rated voltage DC1kV 110% of the rated voltage			I.K.			Rated voltage	Test voltage
Pretreatment Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. Appearance No defects or abnormalities. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent : Isopropyl alcohol				(Whichever is smaller)		DC250V	150% of the rated voltage
Pretreatment Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. 16 Solvent Resistance Marking Legible. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent: Isopropyl alcohol							
Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent: Isopropyl alcohol						DC1kV	110% of the rated voltage
Apply test voltage for one hour at test temperature. Remove and set at *room condition for 24±2 hours. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent : Isopropyl alcohol					Pretreatme	ent	
Remove and set at *room condition for 24±2 hours. Appearance No defects or abnormalities. The capacitor should be fully immersed, unagitated, in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent : Isopropyl alcohol							test temperature.
Resistance Marking Legible. in reagent at 20 to 25°C for 30±5 seconds. and then remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent : Isopropyl alcohol							
remove gently. Marking on the surface of the capacitor shall immediately be visually examined. Regent: Isopropyl alcohol	16	Solvent	Appearance	No defects or abnormalities.	The capacito	or should be fully imm	ersed, unagitated,
capacitor shall immediately be visually examined. Regent : Isopropyl alcohol		Resistance	Marking	Legible.	in reagent a	t 20 to 25°C for 30±5	seconds. and then
Regent : Isopropyl alcohol					remove gen	tly. Marking on the su	rface of the
					capacitor sh	all immediately be vis	sually examined.
"Toom Condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Almosphere pressure: 36 to 10tikPa				1			
	* "rooi	m condition" T	emperature : 15	o to 35°C, Relative humidity : 45 to 75%, Atmo	sphere press	ure : 86 to 106kPa	
	l						

6. Packing specification

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity \times *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

Note)

The outer package and the number of outer packing be changed by the order getting amount.

JKBCRPE02

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way

EKTRPE01

7. Taping specification

7-1. Dimension of capacitors on tape

Straight taping type < Lead Style : E1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

Item	Code	Dimensions	Remarks			
Pitch of component	Р	12.7+/-1.0				
Pitch of sprocket hole	P0	12.7+/-0.2				
Lead spacing	F	5.0+0.6/-0.2				
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction			
Length from hole center to lead	P1	3.85+/-0.7				
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend			
Carrier tape width	W	18.0+/-0.5				
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction			
For straight lead type	Н	17.5+/-0.5				
Protrusion length	L	0.5 max.				
Diameter of sprocket hole	ФD0	4.0+/-0.1				
Lead diameter	Фd	0.5+/-0.05				
Total tape thickness	t1	0.6+/-0.3	They include hold down tape			
Total thickness of tape and lead wire	t2	1.5 max.	thickness.			
Deviation agrees tone	∆h1	2.0 max. (Dime	nsion code: U)			
Deviation across tape	∆h2	1.0 max. (exce	pt as above)			
Portion to cut in case of defect	L	11.0+0/-1.0				
Hold down tape width	WO	9.5 min.				
Hold down tape position	W2	1.5+/-1.5				
Continue systematics and load		2.0 max. (Dime	nsion code : U)			
Coating extension on lead	е	1.5 max. (except as above)				

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction
Length from hole center to lead	P1	3.85+/-0.7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	H0	16.0+/-0.5	
Protrusion length	Q.	0.5 max.	
Diameter of sprocket hole	ФD0	4.0+/-0.1	
Lead diameter	Фd	0.5+/-0.05	
Total tape thickness	t1	0.6+/-0.3	They include hold down tape
Total thickness of tape and lead wire	t2	1.5 max.	thickness
Deviation across tape	Δh1	2.0 max. (Di	mension code : W)
Deviation across tape	Δh2	1.0 max. (ex	ccept as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	WO	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of	crimp

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.

2) Splicing of tape

- a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.